Closed-Form Plastic Collapse Loads of Pipe Bends Under Combined Pressure and In-Plane Bending

Author(s):  
Chang-Sik Oh ◽  
Yun-Jae Kim

Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed.

2007 ◽  
Vol 345-346 ◽  
pp. 1377-1380 ◽  
Author(s):  
Yun Jae Kim ◽  
Kuk Hee Lee ◽  
Chi Yong Park

The present work presents plastic limit load solutions for branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials. The proposed solutions are valid for a wide range of branch junction geometries; ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0.


2006 ◽  
Vol 321-323 ◽  
pp. 38-42
Author(s):  
Yun Jae Kim ◽  
Chang Sik Oh ◽  
Bo Kyu Park ◽  
Young Il Kim

This paper presents limit loads for circumferential cracked pipe bends under in-plane bending, based on detailed three-dimensional finite element limit analyses. FE analyses are performed based on elastic-perfectly-plastic materials and the geometrically linear assumption. Both through-wall cracks and part-through surface cracks (having constant depths) are considered, together with different crack locations (extrados and intrados). Based on the FE results, closed-form approximations are proposed for plastic limit loads of pipe bends. It is found that limit loads of pipe bends are smaller than those of straight pipes, but are close for deep and long cracks.


Author(s):  
Yun-Jae Kim ◽  
Chang-Sik Oh ◽  
Young-Il Kim ◽  
Chi-Yong Park

This paper proposes plastic limit and collapse loads for circumferential through-wall cracked pipe bends under in-plane bending, based on three-dimensional finite element limit analyses. The material is assumed to be elastic-perfectly-plastic, but both the geometrically linear (small strain) and the geometrically nonlinear (large geometry change) options are employed. Regarding crack location, both extrados and intrados cracks are considered. Moreover, for practical application, closed-form approximations of plastic limit and collapse loads are proposed based on the FE results, and compared with corresponding solutions for straight pipes.


Author(s):  
Jong-Hyun Kim ◽  
Chang-Sik Oh ◽  
Joon-Hyuk Ahn ◽  
Yun-Jae Kim ◽  
Chi-Yong Park ◽  
...  

Based on systematic three-dimensional (3-D), large strain FE limit analyses using elastic-perfectly plastic materials, this paper quantifies the effect of local wall thinning on plastic behaviors and TES (twice-elastic-slope) plastic loads for 90° elbows under in-plane bending. The thinning geometry is assumed to be rectangular rather than circular, but the nonlinear geometry effect is fully considered. Results from systematic analyses lead to simple approximations for TES plastic loads, covering a wide range of elbow and thinning geometries.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


Author(s):  
Brian R. Macejko

The 2007 edition of ASME Boiler & Pressure Vessel Code Section VIII Division 2 and the 2007 edition of Fitness-For-Service API 579-1/ASME FFS-1 provide the option to use the limit-load method to assess protection against plastic collapse for components of pressurized process equipment. Per the methodology presented therein, the allowable load on a component is established by applying design factors to the elastic-perfectly plastic limit-load such that the onset of gross plastic deformation (plastic collapse) will not occur. Typically, the design limitations of pressure vessel internal components have been assessed through closed form solutions with conservative assumptions. It has been found that the maximum pressure delta across vessel internals established through closed form solutions can become limiting in determination of time between equipment shutdowns. This paper will outline a practical example of industry applied use of the limit-load method to qualify extended limits on mechanical loads applied to pressure vessel internals.


2004 ◽  
Vol 126 (3) ◽  
pp. 307-317 ◽  
Author(s):  
J. Chattopadhyay ◽  
A. K. S. Tomar ◽  
B. K. Dutta ◽  
H. S. Kushwaha

A large throughwall circumferential crack in an elbow subjected to in-plane bending moment can significantly reduce its collapse load. Therefore, it is very important to know the collapse moment of an elbow in the presence of a throughwall circumferential crack. The existing closed-form collapse moment equations of throughwall circumferentially cracked elbows are either too conservative or inadequate to correctly quantify the weakening effect due to the presence of the crack, especially for opening mode of bending moment. Therefore, the present study has been carried out to investigate through elastic-plastic finite element analysis the effect of a throughwall circumferential crack on the collapse moment of an elbow under in-plane bending moment. A total of 72 cases of elbows with various sizes of circumferential cracks (2θ=0–150 deg), different wall thickness (R/t=5–20), different elbow bend radii Rb/R=2,3 and two different bending modes, namely closing and opening have been considered in the analysis. Elastic-perfectly plastic stress-strain response of material has been assumed. Collapse moments have been evaluated from moment-end rotation curves by twice-elastic slope method. From these results, closed-form expressions have been proposed to evaluate collapse moments of elbows under closing and opening mode of bending moment. The predictions of these proposed equations have been compared with 8 published elbow test data and are found to be within ±11% variation except for one case.


Author(s):  
Yun-Jae Kim ◽  
Kuk-Hee Lee

The present work presents plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials. The proposed solutions are valid to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparison with FE results shows good agreement.


2008 ◽  
Vol 43 (2) ◽  
pp. 87-108 ◽  
Author(s):  
Y‐J Kim ◽  
K‐H Lee ◽  
C‐Y Park

Closed‐form yield loci are proposed for branch junctions under combined pressure and in‐plane bending, via small‐strain three‐dimensional finite element (FE) limit load analyses using elastic—perfectly plastic materials. Two types of bending loading are considered: bending on the branch pipe and that on the run pipe. For bending on the run pipe, the effect of the bending direction is further considered. Comparison with extensive FE results shows that predicted limit loads using the proposed solutions are overall conservative and close to FE results. The proposed solutions are believed to be valid for the branch‐to‐run pipe ratios of radius and of thickness from 0.0 to 1.0, and the mean radius‐to‐thickness ratio of the run pipe from 5.0 to 20.0.


2001 ◽  
Vol 68 (5) ◽  
pp. 715-724 ◽  
Author(s):  
A. P.-D. Ku ◽  
R. P. Nordgren

This paper concerns the plastic collapse of an elastic/perfectly plastic medium with randomly variable yield strength under a fixed load. The yield strength is represented by a Gaussian random field of known statistical properties. Using the theorems of limit analysis and the methods of reliability theory, algorithms are developed for the computation of upper and lower bounds on the probability of plastic collapse. By varying the magnitude of the fixed load, bounds on the probability distribution function for the collapse load can be computed. Results are given for uniform pressure applied to a rectangular region of the surface of an elastic/plastic half-space. For the corresponding plane problem, results for the classical Hill and Prandtl failure mechanisms are compared. Three-dimensional results are found to differ significantly from those of the plane problem. Comparison is made with results of a previous approximate method for three-dimensional problems.


Sign in / Sign up

Export Citation Format

Share Document