An Approximate Damping Model for Two-Phase Cross-Flow in Horizontal Tube Bundles

Author(s):  
W. G. Sim

An approximate analytical model, to predict the two-phase damping for upward cross-flow through horizontal bundles, has been developed. This model will allow researches to provide analytical estimates of the damping ratios. The existing semiempirical approach by Pettigrew and Taylor (2003) was approximated by taking the lower envelope of the damping data. To estimate the void fraction for the cross-flow, the void fraction model proposed by Feenstra etc (2000) is utilized. The development of the present damping model stemmed from the two-phase multiplier of pressure loss and the momentum flux of the two-phase flow. The important variables on the damping are identified. The results of the present model agree well with experimental damping ratios in air-mixtures for a sufficiently wide range of pitch mass ratio, quality and p/d ratios. It has also shown predictive capability for steam-water mixtures and Freon 11.

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1355
Author(s):  
Claire Dubot ◽  
Cyrille Allery ◽  
Vincent Melot ◽  
Claudine Béghein ◽  
Mourad Oulghelou ◽  
...  

Predicting the void fraction of a two-phase flow outside of tubes is essential to evaluate the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture properties and affects two-phase mixture velocity, which enable evaluating the pressure drop of the system. The two-fluid model for the numerical simulation of two-phase flows requires interaction laws between phases which are not known and/or reliable for a flow within a tube bundle. Therefore, the mixture model, for which it is easier to implement suitable correlations for tube bundles, is used. Indeed, by expressing the relative velocity as a function of slip, the void fraction model of Feenstra et al.and Hibiki et al. developed for upward cross-flow through horizontal tube bundles is introduced and compared. With the method suggested in this paper, the physical phenomena that occur in tube bundles are taken into consideration. Moreover, the tube bundle is modelled using a porous media approach where the Darcy–Forchheimer term is usually defined by correlations found in the literature. However, for some tube bundle geometries, these correlations are not available. The second goal of the paper is to quickly compute, in quasi-real-time, this term by a non-intrusive parametric reduced model based on Proper Orthogonal Decomposition. This method, named Bi-CITSGM (Bi-Calibrated Interpolation on the Tangent Subspace of the Grassmann Manifold), consists in interpolating the spatial and temporal bases by ITSGM (Interpolation on the Tangent Subspace of the Grassmann Manifold) in order to define the solution for a new parameter. The two developed methods are validated based on the experimental results obtained by Dowlati et al. for a two-phase cross-flow through a horizontal tube bundle.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

An approximate analytical model, to predict the drag coefficient on a cylinder and the two-phase Euler number for upward two-phase cross-flow through horizontal bundles, has been developed. To verify the model, two sets of experiments were performed with an air–water mixture for a range of pitch mass fluxes and void fractions. The experiments were undertaken using a rotated triangular (RT) array of cylinders having a pitch-to-diameter ratio of 1.5 and cylinder diameter 38 mm. The void fraction model proposed by Feenstra et al. was used to estimate the void fraction of the flow within the tube bundle. An important variable for drag coefficient estimation is the two-phase friction multiplier. A new drag coefficient model has been developed, based on the single-phase flow Euler number formulation proposed by Zukauskas et al. and the two-phase friction multiplier in duct flow formulated by various researchers. The present model is developed considering the Euler number formulation by Zukauskas et al. as well as existing two-phase friction multiplier models. It is found that Marchaterre's model for two-phase friction multiplier is applicable to air–water mixtures. The analytical results agree reasonably well with experimental drag coefficients and Euler numbers in air–water mixtures for a sufficiently wide range of pitch mass fluxes and qualities. This model will allow researchers to provide analytical estimates of the drag coefficient, which is related to two-phase damping.


1996 ◽  
Vol 118 (3) ◽  
pp. 265-277 ◽  
Author(s):  
C. E. Taylor ◽  
M. J. Pettigrew ◽  
I. G. Currie

Data from two experimental programs have been analyzed to determine the characteristics of the random excitation forces associated with two-phase cross-flow in tube bundles. Large-scale air-water flow loops in France and Canada were used to generate the data. Tests were carried out on cantilevered, clamped-pinned, and clamped-clamped tubes in normal-square, parallel-triangular, and normal-triangular configurations. Either strain gages or force transducers were used to measure the vibration response of a centrally located tube as the tube array was subjected to a wide range of void fractions and flow rates. Power spectra were analyzed to determine the effect of parameters such as tube diameter, frequency, flow rate, void fraction, and flow regime on the random excitation forces. Normalized expressions for the excitation force power spectra were found to be flow-regime dependent. In the churn flow regime, flow rate and void fraction had very little effect on the magnitude of the excitation forces. In the bubble-plug flow regime, the excitation forces increased rapidly with flow rate and void fraction.


Author(s):  
W. G. Sim ◽  
W. Mureithi Njuki

An approximate analytical model for upward two-phase cross-flow through horizontal bundles, to predict drag coefficient on a cylinder and two-phase Euler number, has been developed. To verify the model, two sets of experiments were performed for various pitch mass fluxes of air-water mixture with void fraction. The experiments were undertaken with rotated triangular array of cylinders. The pitch to diameter ratio is 1.5 and the cylinder diameter 38 mm. The void fraction model proposed by Feenstra et al. (2000) is utilized to estimate the void fraction for the cross-flow in the tube bundle. An important variable on the drag coefficient is the two-phase friction multiplier. An empirical formulation of non dimensional pressure drop (Euler number) for single phase flow in tube bundles was proposed by Zukauskas et al. (1988) and two-phase friction multiplier in duct flow was formulated by various researchers. Considering the formulations, the present model was developed. It is found that Marchaterre’s model (1961) for two-phase friction multiplier is applicable to air-water mixtures. The analytical results agree well with experimental drag coefficients and Euler numbers in air-water mixtures for a sufficiently wide range of pitch mass fluxes and qualities. This model will allow researcher to provide analytical estimates of the drag coefficient, which is related to two-phase damping.


2021 ◽  
Vol 655 (1) ◽  
pp. 012024
Author(s):  
O.H. Ajesi ◽  
M.B. Latif ◽  
S.T. Gbenu ◽  
C. A. Onumejor ◽  
M. K. Fasasi ◽  
...  

2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The working fluid used was Freon 11, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The damping measurements were obtained by “plucking” the monitored tube from outside the test section using electromagnets. An exponential function was fitted to the tube decay trace, producing consistent damping measurements and minimizing the effect of frequency shifting due to fluid added mass fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of density and velocity predictions. It was found that the Capillary number, when combined with the two-phase damping ratio (interfacial damping), shows a well defined behaviour depending on the flow regime. This observation can be used to develop a better methodology to normalize damping results. The fluidelastic results agree with previously presented data when analyzed using the HEM and the half-power bandwidth method. The interfacial velocity is suggested for fluidelastic studies due to its capability for collapsing the fluidelastic data. The interfacial damping was introduced as a tool to include the effects of flow regime into the stability maps.


Author(s):  
E. S. Perrot ◽  
N. W. Mureithi ◽  
M. J. Pettigrew ◽  
G. Ricciardi

This paper presents test results of vibration forces in a normal triangular tube bundle subjected to air-water cross-flow. The dynamic lift and drag forces were measured with strain gage instrumented cylinders. The array has a pitch-to-diameter ratio of 1.5, and the tube diameter is 38 mm. A wide range of void fraction and fluid velocities were tested. The experiments revealed significant forces in both the drag and lift directions. Constant frequency and quasi-periodic fluid forces were found in addition to random excitation. These forces were analyzed and characterized to understand their origins. The forces were found to be dependent on the position of the cylinder within the bundle. The results are compared with those obtained with flexible cylinders in the same tube bundle and to those for a rotated triangular tube bundle. These comparisons reveal the influence of quasi-periodic forces on tube motions.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


Sign in / Sign up

Export Citation Format

Share Document