Lower Bound Net-Section Limit Loads for Circumferential Part-Through Surface Cracked Pipes Under Combined Pressure and Bending

Author(s):  
Chang-Kyun Oh ◽  
Yun-Jae Kim ◽  
Jong-Sung Kim ◽  
Te-Eun Jin

This paper provides plastic limit loads of pipes with constant-depth, circumferential part-through surface cracks under combined pressure and bending. A key issue is to postulate discontinuous hoop stress distributions in the net-section. Validity of the proposed limit load solutions are checked against the results from three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly plastic material behaviour.

2006 ◽  
Vol 321-323 ◽  
pp. 38-42
Author(s):  
Yun Jae Kim ◽  
Chang Sik Oh ◽  
Bo Kyu Park ◽  
Young Il Kim

This paper presents limit loads for circumferential cracked pipe bends under in-plane bending, based on detailed three-dimensional finite element limit analyses. FE analyses are performed based on elastic-perfectly-plastic materials and the geometrically linear assumption. Both through-wall cracks and part-through surface cracks (having constant depths) are considered, together with different crack locations (extrados and intrados). Based on the FE results, closed-form approximations are proposed for plastic limit loads of pipe bends. It is found that limit loads of pipe bends are smaller than those of straight pipes, but are close for deep and long cracks.


2007 ◽  
Vol 345-346 ◽  
pp. 1377-1380 ◽  
Author(s):  
Yun Jae Kim ◽  
Kuk Hee Lee ◽  
Chi Yong Park

The present work presents plastic limit load solutions for branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials. The proposed solutions are valid for a wide range of branch junction geometries; ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


2008 ◽  
Vol 43 (2) ◽  
pp. 87-108 ◽  
Author(s):  
Y‐J Kim ◽  
K‐H Lee ◽  
C‐Y Park

Closed‐form yield loci are proposed for branch junctions under combined pressure and in‐plane bending, via small‐strain three‐dimensional finite element (FE) limit load analyses using elastic—perfectly plastic materials. Two types of bending loading are considered: bending on the branch pipe and that on the run pipe. For bending on the run pipe, the effect of the bending direction is further considered. Comparison with extensive FE results shows that predicted limit loads using the proposed solutions are overall conservative and close to FE results. The proposed solutions are believed to be valid for the branch‐to‐run pipe ratios of radius and of thickness from 0.0 to 1.0, and the mean radius‐to‐thickness ratio of the run pipe from 5.0 to 20.0.


Author(s):  
Chang-Sik Oh ◽  
Yun-Jae Kim

This paper quantifies effects of the bend angle and the length of the attached straight pipe on plastic limit loads of the 90° pipe bend, based on small strain FE limit analyses using elastic-perfectly plastic materials with the small geometry change option. It is found that the effect of the length of the attached straight pipe on plastic limit loads can be significant, and the limit loads tend to decrease with decrease of the length of the attached straight pipe. Regarding the effect of the bend angle, it is found the plastic load smoothly changes from the limit load of the straight pipe when the bend angle approaches zero to the plastic load of the 90° pipe bend when the bend angle approaches 90 degree.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


Author(s):  
Shunjie Li ◽  
Changyu Zhou ◽  
Jian Li ◽  
Xinting Miao

The effect of bend angle on plastic limit loads of pipe bends (elbows) under in-plane opening and closing bending moment is presented using three-dimensional large strain nonlinear finite element analyses. The results show that the presence of ovality significantly leads to the stress concentration in the middle cross section, which is the critical section of pipe bends. Meanwhile the state of stress concentration is also associated with the loading modes including the in-plane opening bending moment and the closing bending moment. Then plastic limit loads of pipe bends are further studied. It is found that plastic limit loads are decreasing with the increase of bend angles. Especially the variation of plastic limit loads of small angle pipe bends (bend angle from the 0 degree to 90 degree) is larger than that of large angle pipe bends (bend angle greater than 90 degree). Based on the finite element results, the present plastic limit load solutions are not fit for the large angle pipe bends (bend angle greater than 90 degree).


Author(s):  
Yun-Jae Kim ◽  
Chang-Sik Oh ◽  
Young-Il Kim ◽  
Chi-Yong Park

This paper proposes plastic limit and collapse loads for circumferential through-wall cracked pipe bends under in-plane bending, based on three-dimensional finite element limit analyses. The material is assumed to be elastic-perfectly-plastic, but both the geometrically linear (small strain) and the geometrically nonlinear (large geometry change) options are employed. Regarding crack location, both extrados and intrados cracks are considered. Moreover, for practical application, closed-form approximations of plastic limit and collapse loads are proposed based on the FE results, and compared with corresponding solutions for straight pipes.


2008 ◽  
Vol 385-387 ◽  
pp. 833-836
Author(s):  
Sang Min Lee ◽  
Young Hwan Choi ◽  
Hae Dong Chung ◽  
Yoon Suk Chang ◽  
Young Jin Kim

A piping system including straight pipes, elbows and tee branches in a nuclear power plant is mostly subjected to severe loading conditions with high temperature and pressure. In particular, the wall-thinning of an elbow due to flow accelerated corrosion is one of safety issues in the nuclear industry. In this respect, it is necessary to investigate the limit loads of an elbow with a wall-thinned part for evaluating integrity. In this paper, three dimensional plastic limit analyses are performed to obtain limit loads of an elbow with different bend angles as well as defect geometries under internal pressure and in-plane/out-of-plane bending moment. The limit loads are also compared with the results from limit load solutions of an uninjured elbow based on the von Mises yield criteria. Finally, the effects of significant factors, bend angle and defect shape, are quantified to estimate the exact load carrying capacity of an elbow during operation.


Sign in / Sign up

Export Citation Format

Share Document