JEDI: A Code for the Calculation of J for Cracks Inserted in Initial Strain Fields and the Role of J and Q in the Prediction of Crack Extension and Fracture

Author(s):  
David W. Beardsmore

When crack tip constraint is high, the crack tip contour integral J characterises the asymptotic stress, strain and displacement fields of a stationary crack in an elastic-plastic material. In other cases, the crack tip fields can be related to J and a second parameter Q which governs the crack tip constraint. These observations are the basis of J-Q fracture mechanics assessments. In the most usual procedure J is compared to an effective, constraint-corrected fracture toughness Jc which is derived from Q and the fracture toughness of the material. The difference Jc – J is a measure of the margin of safety. The assessment procedure assumes there are no initial inelastic strains in the component or the fracture toughness specimen prior to introducing the crack and subsequent loading. However, plant components may contain inelastic strains prior to cracking arising from welding and other manufacturing or fit-up processes. This initial strain field can be established by a finite element analysis that simulates the welding and/or manufacture sequence. Weld residual stresses develop due to the accumulation of incompatible, inelastic strains, including thermal, plastic and transformation strains in the material. If a crack is inserted into an initial strain field, a procedure is required to calculate J by analysis of the resulting crack tip fields. Moreover, for the fracture assessment method to remain valid, it must be demonstrated that the values of J and Q continue to govern the onset of crack extension or fracture so that a meaningful comparison of J with Jc can be made. This paper describes a domain integral for calculating J when inelastic strains exist prior to cracking, and its implementation in the JEDI computer code. The code is used to determine J for a crack inserted into a three-point bend specimen containing an initial inelastic strain field representative of one that might develop during welding. The extent to which the crack tip stress field is characterised by J and Q is examined by comparing it to the field for high constraint, small-scale yielding conditions.

Author(s):  
Yuh J. Chao ◽  
Xian-Kui Zhu ◽  
Yil Kim ◽  
M. J. Pechersky ◽  
M. J. Morgan ◽  
...  

Because crack-tip fields of single edge notched bend (SENB) specimens are significantly affected by the global bending moment under the conditions of large-scale yielding (LSY), the classical crack tip asymptotic solutions fail to describe the crack-tip fields within the crack tip region prone to ductile fracture. As a result, existing theories do not quantify correctly the crack-tip constraint in such specimens under LSY conditions. To solve this problem, the J-A2 three-term solution is modified in this paper by introducing an additional term derived from the global bending moment in the SENB specimens. The J-integral represents the intensity of applied loading, A2 describes the crack-tip constraint level, and the additional term characterizes the effect of the global bending moment on the crack-tip fields of the SENB specimens. The global bending stress is derived from the strength theory of materials, and proportional to the applied bending moment and the inverse of the ligament size. Results show that the global bending stress near the crack tip of SENB specimens is very small compared to the J-A2 three-term solution under small-scale yielding (SSY), but becomes significant under the conditions of LSY or fully plastic deformation. The modified J-A2 solutions match well with the finite element results for the SENB specimens at all deformation levels ranging from SSY to LSY, and therefore can effectively model the effect of the global bending stress on the crack-tip fields. Consequently, the crack-tip constraint of such bending specimens can now be quantified correctly.


1990 ◽  
Vol 42 (2) ◽  
pp. 157-172 ◽  
Author(s):  
John L. Bassani ◽  
Donald E. Hawk

Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Kim Wallin ◽  
Gerhard Nagel

Within the framework of the European research project VOCALIST, centre cracked tension, CC(T), specimens made of an RPV steel were tested and analysed to quantify the influence of local stress state on fracture toughness. The CC(T) specimens demonstrate a significant loss of crack tip constraint resulting in a considerable increase in fracture toughness as compared to standard fracture mechanics specimens. So, the master curve reference temperature, To, determined on the basis of CC(T) tests performed in this study is about 43°C lower than To obtained on standard C(T) specimens. Finite element analyses of the tests revealed that the above experimental finding is in a good agreement with the empirical correlations between the reference temperature shift and the crack tip constraint as characterised by the T-stress or Q parameter (Wallin, 2001; Wallin, 2004). The results of this work are consistent with a number of other tests performed within the VOCALIST project and contribute to the validation of engineering methods for the crack assessment in components taking account of constraint.


2004 ◽  
Vol 126 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Chang-Ryul Pyo

One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy of predicting piping failure, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from C(T) specimen. It is shown that the J-resistance curve from the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed three-dimensional finite element analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.


2014 ◽  
Vol 891-892 ◽  
pp. 1585-1590 ◽  
Author(s):  
Jana Horníková ◽  
Pavel Šandera ◽  
Stanislav Žák ◽  
Jaroslav Pokluda

Determination of fatigue crack growth characteristics under shear-mode loading is a rather complicated problem. To increase an efficiency and precision of such testing, special specimens enabling simultaneous propagation of shear cracks under II, III and II+III loading modes started to be used rather recently. K-calibration of these specimens was performed and, after unique pre-crack and heat-treatment procedures, effective thresholds in several metallic materials could be measured. However, a description of crack growth rate in terms of appropriate fracture mechanics quantities demands a precise assessment of plastic zone size under various shear-mode loading levels. This contribution is focused on the numerical elasto-plastic analysis of stress-strain field at the crack tip in specimens made of a pure polycrystalline (ARMCO) iron. The results reveal that the small scale yielding conditions are fulfilled in the near-threshold region. Starting from ΔK values approximately two times higher than the threshold, however, the ΔKJ or ΔJ approach should already be utilized. Probably the most interesting result of the analysis lies in a simple procedure that enables us to separate individual loading components ΔKJ,II and ΔKJ,III, applied in the mixed-mode II+III part of the specimen, by comparing elasto-plastic and elastic solutions.


2011 ◽  
Vol 197-198 ◽  
pp. 1595-1598 ◽  
Author(s):  
Jie Xu ◽  
Yu Fan

This paper studies the effects of temperature and crack tip constraint on cleavage fracture toughness of the weld thermal simulated X80 pipeline steels. A large number of fracture toughness (as denoted by CTOD) tests together with 3D finite element analysis are performed using single edge notched bending (SENB) and tension (SENT) specimens at different temperatures. Coarse-grained heat-affected zone (CGHAZ) is considered as the material microstructure in preparation of the weld thermal simulated fracture mechanics specimens.


Sign in / Sign up

Export Citation Format

Share Document