Effects of Temperature and Crack Tip Constraint on Cleavage Fracture Toughness in the Weld Thermal Simulated X80 Pipeline Steels

2011 ◽  
Vol 197-198 ◽  
pp. 1595-1598 ◽  
Author(s):  
Jie Xu ◽  
Yu Fan

This paper studies the effects of temperature and crack tip constraint on cleavage fracture toughness of the weld thermal simulated X80 pipeline steels. A large number of fracture toughness (as denoted by CTOD) tests together with 3D finite element analysis are performed using single edge notched bending (SENB) and tension (SENT) specimens at different temperatures. Coarse-grained heat-affected zone (CGHAZ) is considered as the material microstructure in preparation of the weld thermal simulated fracture mechanics specimens.

Author(s):  
Simon Kamel ◽  
Tiyaporn Vanagosoom ◽  
Prakash Shanthenu ◽  
Catrin M. Davies ◽  
Kamran M. Nikbin

A novel fracture toughness specimen design is presented for investigating the effects of residual stress and crack tip constraint on fracture. The specimen design, denoted here as an SC(T) specimen, is a hybrid of a blunt-notched C(T) specimen and an SEN(T) specimen. The SC(T) specimen is mechanically pre-compressed on the C(T) load line to introduce a residual stress in the ligament ahead of a blunt notch. Following pre-compression, a crack is introduced into the tensile residual stress field. The SC(T) specimen can then be loaded either on the C(T) or SEN(T) load line to examine the effects of residual stress under high constraint or low constraint conditions respectively. Finite element analysis is performed to examine the sensitivity of the specimen dimensions on crack tip constraint and to demonstrate the introduction of residual stress into the specimen.


Author(s):  
R. S. Kulka

During fracture toughness testing of SEN(B) specimens, an important assumption is that the test specimen is highly constrained. This assumption is ensured by the testing of a deeply cracked specimen, with in-plane and out-of-plane dimensions that are sufficient to guarantee an appropriate level of crack tip stress triaxiality. This condition guarantees that high-constraint fracture toughness values are derived, conservative for use in standard fracture mechanics assessments. In reality, many components have small in-plane or out-of-plane dimensions. It is considered that this could cause a reduction in crack tip constraint of a sufficient amount to increase the effective fracture toughness of the components. However, there is currently limited understanding as to the magnitude of the benefits that could be claimed. Finite element analysis of various thin-width SEN(B) specimens has been undertaken. The knowledge gained can be used to develop fracture mechanics methodology for the testing of thin-width specimens and the subsequent derivation of appropriate toughness values.


Author(s):  
P.-S. Lam ◽  
Y. J. Chao ◽  
X.-K. Zhu ◽  
Y. Kim ◽  
R. L. Sindelar

Mechanical testing of A285 carbon steel, a storage tank material, was performed to develop fracture properties based on the constraint theory of fracture mechanics. A series of single edge-notched bend (SENB) specimen designs with various levels of crack tip constraint were used. The variation of crack tip constraint was achieved by changing the ratio of the initial crack length to the specimen depth. The test data show that the J-R curves are specimen-design-dependent, which is known as the constraint effect. A two-parameter fracture methodology is adopted to construct a constraint-modified J-R curve, which is a function of the constraint parameter, A2, while J remains the loading parameter. This additional fracture parameter is derived from a closed form solution and can be extracted from the finite element analysis for a specific crack configuration. Using this set of SENB test data, a mathematical expression representing a family of the J-R curves for A285 carbon steel can be developed. It is shown that the predicted J-R curves match well with the SENB data over an extensive amount of crack growth. In addition, this expression is used to predict the J-R curve of a compact tension specimen (CT), and reasonable agreement to the actual test data is achieved. To demonstrate its application in a flaw stability evaluation, a generic A285 storage tank with a postulated axial flaw is used. For a flaw length of 10% of the tank height, the predicted J-R curve is found to be similar to that for a SENB specimen with a short notch, which is in a state of low constraint. This implies that the use of a J-R curve from the ASTM (American Society for Testing and Materials) standard designs, which typically are high constraint specimens, may be overly conservative for analysis of fracture resistance of large structures.


Author(s):  
Dieter Siegele ◽  
Igor Varfolomeyev ◽  
Kim Wallin ◽  
Gerhard Nagel

Within the framework of the European research project VOCALIST, centre cracked tension, CC(T), specimens made of an RPV steel were tested and analysed to quantify the influence of local stress state on fracture toughness. The CC(T) specimens demonstrate a significant loss of crack tip constraint resulting in a considerable increase in fracture toughness as compared to standard fracture mechanics specimens. So, the master curve reference temperature, To, determined on the basis of CC(T) tests performed in this study is about 43°C lower than To obtained on standard C(T) specimens. Finite element analyses of the tests revealed that the above experimental finding is in a good agreement with the empirical correlations between the reference temperature shift and the crack tip constraint as characterised by the T-stress or Q parameter (Wallin, 2001; Wallin, 2004). The results of this work are consistent with a number of other tests performed within the VOCALIST project and contribute to the validation of engineering methods for the crack assessment in components taking account of constraint.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 982 ◽  
Author(s):  
Guian Qian ◽  
Wei-Sheng Lei ◽  
Zhenfeng Tong ◽  
Zhishui Yu

It is a conventional practice to adopt Weibull statistics with a modulus of 4 for characterizing the statistical distribution of cleavage fracture toughness of ferritic steels, albeit based on a rather weak physical justification. In this study, a statistical model for cleavage fracture toughness of ferritic steels is proposed according to a new local approach model. The model suggests that there exists a unique correlation of the cumulative failure probability, fracture toughness and yield strength. This correlation is validated by the Euro fracture toughness dataset for 1CT specimens at four different temperatures, which deviates from the Weibull statistical model with a modulus of four.


2004 ◽  
Vol 126 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Chang-Ryul Pyo

One important element of the Leak-Before-Break analysis of nuclear piping is how to determine relevant fracture toughness (or the J-resistance curve) for nonlinear fracture mechanics analysis. The practice to use fracture toughness from a standard C(T) specimen is known to often give conservative estimates of toughness. To improve the accuracy of predicting piping failure, this paper proposes a new method to determine fracture toughness using a nonstandard testing specimen, curved wide-plate in tension. To show validity of the proposed curved wide-plate test, the J-resistance curve from the full-scale pipe test is compared with that from the curved wide-plate test and that from C(T) specimen. It is shown that the J-resistance curve from the curved wide-plate tension test is similar to, but that from the C(T) specimen is lower than, the J-resistance curve from the full-scale pipe test. Further validation is performed by investigating crack-tip constraint conditions via detailed three-dimensional finite element analyses, which shows that the crack-tip constraint condition in the curved wide-plate tension specimen is indeed similar to that in the full-scale pipe under bending.


Author(s):  
Colin J. Madew ◽  
David W. Beardsmore ◽  
Richard O. Howells

Current assessments of pressurised components use fracture data collected on conventional size, 25 mm and 10 mm thick fracture specimens. It would be advantageous to be able to measure fracture toughness on what has commonly been termed miniature specimens (i.e. smaller than 10mm) as this would allow a more economical use of available plant material. However, tests on miniature specimens generally produce values of fracture toughness which over-estimate the fracture toughness of the material (as evaluated from the 25 mm or 10 mm specimens). In particular, the measured scatter in the data exhibits lower-bound values that are higher than the values obtained with conventional size specimens. A study has thus been undertaken in order to examine a methodology to derive fracture toughness from miniature specimens and allow a better determination of the lower-bound values. When cleavage fracture toughness tests are carried out using miniature specimens, the values of critical J obtained do not directly determine the cleavage fracture toughness of the material. This is because a loss of crack-tip constraint will generally occur before fracture. In such cases, it is necessary to apply an appropriate constraint correction to map the measured values to their equivalent small-scale yielding values. This paper uses a method for carrying out constraint corrections in order to assess data obtained from a recent UK miniature fracture toughness specimen testing programme. The method is based on the notion of matching areas enclosed by a same-stress contour of maximum principal stress around the crack tip in the specimen and small-scale yielding geometries. In applying the method, two-dimensional, plane strain finite element models of the specimen geometries have been developed together with a boundary layer model of the reference small-scale yielding condition to determine the appropriate areas.


Sign in / Sign up

Export Citation Format

Share Document