Evaluation of Tensile Properties Profile of Weld Zone Using Instrumented Indentation

Author(s):  
Seung-Kyun Kang ◽  
Young-Cheon Kim ◽  
Chan-Pyoung Park ◽  
Dongil Kwon

Understanding the property distribution in the weld zone is very important for structural safety, since deformation and fracture begin at the weakest point. However, conventional tensile tests can measure only average material properties because they require large specimens. Small-scale tests are being extensively researched to remove this limitation, among such tests, instrumented indentation test (IIT) are of great interest because of their simple procedures. Here we describe the evaluation of tensile properties using IIT and a representative stress-strain approach. The representative stressstrain method, introduced in 2008 in ISO/TR29381, directly correlates the stress and strain under the indenter to the true stress and strain of tensile testing by defining representative functions. Using this technique, we successfully estimate the yield strength and tensile strength of structural metallic materials and also obtain profiles of the weld-zone tensile properties.

Author(s):  
Eun-chae Jeon ◽  
Joo-Seung Park ◽  
Doo-Sun Choi ◽  
Kug-Hwan Kim ◽  
Dongil Kwon

The instrumented indentation test, which measures indentation tensile properties, has attracted interest recently because this test can replace uniaxial tensile test. An international standard for instrumented indentation test has been recently legislated. However, the uncertainty of the indentation tensile properties has never been estimated. The indentation tensile properties cannot be obtained directly from experimental raw data as can the Brinell hardness, which makes estimation of the uncertainty difficult. The simplifying uncertainty estimation model for the indentation tensile properties proposed here overcomes this problem. Though the influence quantities are generally defined by experimental variances when estimating uncertainty, here they are obtained by calculation from indentation load-depth curves. This model was verified by round-robin test with several institutions. The average uncertainties were estimated as 18.9% and 9.8% for the indentation yield strength and indentation tensile strength, respectively. The values were independent of the materials’ mechanical properties but varied with environmental conditions such as experimental instruments and operators. The uncertainties for the indentation yield and tensile strengths were greater than those for the uniaxial tensile test. These larger uncertainties were caused by measuring local properties in the instrumented indentation test. The two tests had the same tendency to have smaller uncertainties for tensile strength than yield strength. These results suggest that the simplified model can be used to estimate the uncertainty in indentation tensile properties.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 786 ◽  
Author(s):  
Giovanni Maizza ◽  
Antonio Caporale ◽  
Christian Polley ◽  
Hermann Seitz

The performance of two selective electron beam melting operation modes, namely the manual mode and the automatic ‘build theme mode’, have been investigated for the case of a Ti-6Al-4V alloy (45–105 μm average particle size of the powder) in terms of porosity, microstructure, and mechanical properties. The two operation modes produced notable differences in terms of build quality (porosity), microstructure, and properties over the sample thickness. The number and the average size of the pores were measured using a light microscope over the entire build height. A density measurement provided a quantitative index of the global porosity throughout the builds. The selective-electron-beam-melted microstructure was mainly composed of a columnar prior β-grain structure, delineated by α-phase boundaries, oriented along the build direction. A nearly equilibrium α + β mixture structure, formed from the original β-phase, arranged inside the prior β-grains as an α-colony or α-basket weave pattern, whereas the β-phase enveloped α-lamellae. The microstructure was finer with increasing distance from the build plate regardless of the selected build mode. Optical measurements of the α-plate width showed that it varied as the distance from the build plate varied. This microstructure parameter was correlated at the sample core with the mechanical properties measured by means of a macro-instrumented indentation test, thereby confirming Hall-Petch law behavior for strength at a local scale for the various process conditions. The tensile properties, while attesting to the mechanical performance of the builds over a macro scale, also validated the indentation property measurement at the core of the samples. Thus, a direct correlation between the process parameters, microstructure, porosity, and mechanical properties was established at the micro and macro scales. The macro-instrumented indentation test has emerged as a reliable, easy, quick, and yet non-destructive alternate means to the tensile test to measure tensile-like properties of selective-electron-beam-melted specimens. Furthermore, the macro-instrumented indentation test can be used effectively in additive manufacturing for a rapid setting up of the process, that is, by controlling the microscopic scale properties of the samples, or to quantitatively determine a product quality index of the final builds, by taking advantage of its intrinsic relationship with the tensile properties.


Author(s):  
Dongil Kwon ◽  
Jong Hyoung Kim ◽  
Ohmin Kwon ◽  
Woojoo Kim ◽  
Sungki Choi ◽  
...  

The instrumented indentation technique (IIT) is a novel method for evaluating mechanical properties such as tensile properties, toughness and residual stress by analyzing the indentation load-depth curve measured during indentation. It can be applied directly on small-scale and localized sections in industrial structures and structural components since specimen preparation is very easy and the experimental procedure is nondestructive. We introduce the principles for measuring mechanical properties with IIT: tensile properties by using a representative stress and strain approach, residual stress by analyzing the stress-free and stressed-state indentation curves, and fracture toughness of metals based on a ductile or brittle model according to the fracture behavior of the material. The experimental results from IIT were verified by comparing results from conventional methods such as uniaxial tensile testing for tensile properties, mechanical saw-cutting and hole-drilling methods for residual stress, and CTOD test for fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document