An Investigation Into the Effects of Modelling Cylindrical Nozzle to Cylindrical Vessel Intersections Using 2D Axisymmetric Finite Element Models and a Proposed Method for Correcting the Results

Author(s):  
Daniel Sommerville ◽  
Matthew Walter

Two dimensional (2-D) axisymmetric finite element models (FEMs) are often used as a simplification to modeling cylindrical nozzles that intersect a cylindrical pressure vessel. However, an axisymmetric model has the effect of representing the vessel as a spherical shell rather than a cylindrical shell. Previous work has been done to determine 2-D axisymmetric to three dimensional (3-D) stress correction factors (CFs) for the total stress at the nozzle blend radius to account for this inconsistency. The present paper expands on that work to investigate the effects of the 2-D axisymmetric modeling simplification on the through wall stress distribution at the nozzle corner. The through-wall stress distribution is necessary for some fracture mechanics analyses performed for corner cracked nozzles and for using the simplified elastic-plastic analysis given in NB-3228.5. A simplified method is proposed which can be used to obtain a nozzle specific correction factor, rather than a bounding correction factor, that can be applied to 2-D finite element analysis stress results to correct for the inaccuracy introduced by modeling the intersection as an axisymmetric section.

2012 ◽  
Vol 38 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Mansoor Rismanchian ◽  
Mansour Dakhilalian ◽  
Farshad Bajoghli ◽  
Ehsan Ghasemi ◽  
Pooyan Sadr-Eshkevari

Proper stress distribution on dental implants is necessary in bar-retained implant overlay dentures. We aimed to comparatively assess this stress distribution according to different bar heights using finite element models. A three-dimensional (3D) computer model of mandible with 2 implants (ITI, 4.1 mm diameter and 12 mm length) in canine areas and an overlying implant-supported bar-retained overlay denture were simulated with 0-, 1-, 2-, and 3-mm bar heights using ABAQUS software. A vertical force was applied to the left first molar and gradually increased from 0 to 50 N. The resultant stress distribution was evaluated. Bars of 1 and 2 mm in height transferred the least stress to the implants (3.882 and 3.896 MPa, respectively). The 0-mm height of the bar connection transferred the highest stress value (4.277 MPa). The amount of stress transferred by 3-mm heights of the bar connection was greater than that of 1- and 2-mm bar connections and smaller than that of 0-mm bar connection (4.165 kgN). This 3D finite element analysis study suggested that the use of Dolder bar attachment with 1- and 2-mm heights could be associated with appropriate stress distribution for implant-retained overlay dentures.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Author(s):  
M Taylor ◽  
E W Abel

The difficulty of achieving good distal contact between a cementless hip endoprosthesis and the femur is well established. This finite element study investigates the effect on the stress distribution within the femur due to varying lengths of distal gap. Three-dimensional anatomical models of two different sized femurs were generated, based upon computer tomograph scans of two cadaveric specimens. A further six models were derived from each original model, with distal gaps varying from 10 to 60 mm in length. The resulting stress distributions within these were compared to the uniform contact models. The extent to which femoral geometry was an influencing factor on the stress distribution within the bone was also studied. Lack of distal contact with the prosthesis was found not to affect the proximal stress distribution within the femur, for distal gap lengths of up to 60 mm. In the region of no distal contact, the stress within the femur was at normal physiological levels associated with the applied loading and boundary conditions. The femoral geometry was found to have little influence on the stress distribution within the cortical bone. Although localized variations were noted, both femurs exhibited the same general stress distribution pattern.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 199-207
Author(s):  
Lohitha Kalluri ◽  
Bernard Seale ◽  
Megha Satpathy ◽  
Josephine F. Esquivel-Upshaw ◽  
Yuanyuan Duan

This study was performed as an adjunct to an existing clinical study to validate the effect of veneer: framework thickness ratio on stress distribution in an implant-supported all-ceramic fixed partial denture. Two commercially available titanium dental implants with corresponding customized abutments and a patient-retrieved all-ceramic fixed partial denture were scanned using a high-resolution micro-CT scanner. Reconstructed 3D objects, along with a simulated bone surface, were incorporated into a non-manifold assembly and meshed simultaneously using Simpleware software (Synopsys Simpleware ScanIP Version P-2019.09; Mountain View, CA). Three such volume meshes (Model A, Model B, Model C) corresponding to veneer: framework thickness ratios of 3:1, 1:1, and 1:3 respectively were created, and exported to a finite element analysis software (ABAQUS). An axial load of 110 N was applied uniformly on the occlusal surfaces to calculate the static stresses and contour plots were generated in the post-processing module. From the data obtained, we observed optimum stress distribution in Model B. Also, the tensile stresses were concentrated in the posterior connector region of the prosthesis in all three models tested. Within the limitations of this study, we can conclude that equal thickness of veneer and framework layers would aid in better stress distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


SIMULATION ◽  
2020 ◽  
pp. 003754972097278
Author(s):  
Tigran A Muradyan ◽  
Nshan A Muradyan ◽  
Sergey V Verlinski ◽  
Anna Yu Poghosyan

Connecting implants with teeth is sometimes considered for the support of prostheses in partial edentulism, especially in periodontally compromised and surgical treated patients. The aim of this study is the presentation of a model of tooth–implant nonrigid fixation in comparison with implant–implant and implant–tooth rigid fixation by three-dimensional (3D) finite element analysis. As a model, a situation with a mandibular second premolar and two molars edentulism was selected. Two implantation options with three prosthetics designs were considered. The comparative analysis of stress and strain distribution values under vertical 100 and 200 N loading was performed. The highest peri-implant crestal bone stress distribution was observed in the model with the implant–tooth rigid fixation with 200 N vertical loading with results of 136.56 MPa. In the model with implant–tooth nonrigid fixation, the maximum strain value was observed in the tooth–connector zone and the stress distribution was higher in the connectors and the prosthesis pontic zone, with a maximal value of 27.77 MPa. The design of a tooth–implant fixed denture could be suggested as a method of choice for rehabilitation of the posterior edentulous segment in cases when only one distal implant could be installed. Further clinical research is required to obtain reliable validation data for the proposed method.


Sign in / Sign up

Export Citation Format

Share Document