Thermal Fatigue Evaluation Method of Pipes by Equivalent Stress Amplitude

Author(s):  
Takafumi Suzuki ◽  
Naoto Kasahara

In recent years, reports have increased which are about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the biggest reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions, The Japan Society of Mechanical Engineers (JSME) published the guideline S017-2003 (or JSME guideline) which is an evaluation method of high cycle thermal fatigue damage at a nuclear piping. It has some limitations in terms of its inconstant safety margin and its complexity in evaluation procedure, however. In order to solve these limitations, this paper proposes a new evaluation method of thermal fatigue damage with use of the “equivalent stress amplitude” which represents random temperature fluctuation effects on thermal fatigue damage. Because this new method makes methodology of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation.

Author(s):  
Fujun Liu ◽  
Yueqiang Qian ◽  
Zhangwei Ling ◽  
Shuai Kong ◽  
Mulin Zheng

Bulletin WRC107 is most commonly used in attachment design, but still some uncertainties make it difficult to ensure safety in recent use. Two problems in fatigue evaluation were addressed here, first the bulletin is based on shell theory and some other assumption, and for various condition the calculation error is unknown; second pressure is not considered in calculation. To the first problem, an assessment was performed by comparing the total equivalent stress results of WRC107 and of finite element method (FEM). To the second problem, a method from Chinese standard HG20582-1998 Specification for Stress Calculation of Steel Chemical Vessels (HG method) was introduced as a supplement, and the reliability was studied. The results show that, total equivalent stress amplitude calculated by WRC107 may be underestimated, and its error mainly depends on parameters β and γ. Complemented by HG method, WRC107 could be used in calculation of shell under pressure and external loading.


Author(s):  
Shinsuke Sakai ◽  
Kei Honda ◽  
Satoshi Okajima ◽  
Satoshi Izumi ◽  
Naoto Kasahara

At an incomplete mixing area of high and low temperature fluids, fluid temperature fluctuation often occurs. It induces cyclic thermal stresses in the wall, which may result in fatigue crack initiation. Kasahara et. al. proposed the thermal fatigue evaluation method based on power spectrum density (PSD) in PVP05. This method generalizes the evaluation procedure by preparing PSD charts of fluid and frequency transfer functions of stress for various kinds of plant components. From design point of view, however, this method is too complicated due to the inverse Fourier transform and wave decomposition procedures named Rain Flow Cycle Counting (RFC). In this paper, simplified damage evaluation method for thermal fatigue is proposed by directly evaluating fatigue damage from PSD of stress. Since analytical treatment for evaluation of fatigue amplitude distribution based on PSD is difficult due to complicated procedure of RFC, direct evaluation method for RFC amplitude distribution from PSD is newly proposed. This method gives fatigue damage evaluation with safety margin. This paper shows the dependency of safety margin on geometry of PSD. Finally, application to design for thermal fatigue will be shown. Since PSD of stress in the wall near temperature fluctuation can be easily evaluated using Kasahara’s method, the proposed method will make thermal fatigue damage evaluation far easier.


Author(s):  
Naeem Ahmad ◽  
XiangBin Li ◽  
Iftikhar Ahmad ◽  
Nan Li ◽  
Shahroze Ahmed ◽  
...  

Nuclear Power Plant (NPP) components need to tolerate thermal constraints, internal pressure and thermal transients. These thermal transients being repeated again and again can lead to thermal fatigue of the component. It has significant effect on the degradation of the NPP components in long term. Studies of thermal fatigue on different NPP components such as mixing tees and valves have been carried out before but the charging line in the chemical and volume control system (RCV) of the NPP seems to have been ignored for thermal fatigue analysis. Charging Line is the connection from RCV towards Reactor Coolant System (RCP). To enhance the safety of the charging line, thermal fatigue evaluation of piping system was performed using the Fluid Structure Interaction (FSI) analysis. Temperature distributions in the pipes were determined via thermal hydraulic analysis (CFX) and the results were applied to the structural model of the piping system to determine the thermal stress (Transient Structural). Results revealed the location of fatigue cracks. Types of stress were identified that caused the fatigue damage. The CFD analysis enabled us to clarify the role of turbulence with respect to the thermal loading of the structure. The study will provide valuable information for establishing a permanent methodology to help minimize thermal fatigue damage in NPP components.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xiaoguang Huang ◽  
Zhiqiang Wang

Abstract Thermal fatigue failure of microelectronic chip often initiates from the interface between solder and substrate, and the service life of the chip is largely dependent on the singular stress–strain at this interface. To provide a reasonable life evaluation method, three thermal fatigue evaluation models, including strain-based and stress–strain based, have been established in terms of the interfacial singular fields. Thermal fatigue lives of different chips under different thermal cycles are obtained by thermal fatigue tests, and the stress and strain intensity factors and singular orders at the solder/substrate interface are computed at the same conditions, to determine the material constants in the established models. The thermal fatigue lives predicted are in acceptable agreement with the experimental results. What is more, the application of these thermal fatigue models demonstrates a fact that the thermal fatigue of the microelectronic chips can be evaluated uniformly no matter what the shapes, dimensions of the chip, and the thermomechanical properties of the solders are, as long as the relevant stress–strain intensity factors and singular orders are obtained.


Sign in / Sign up

Export Citation Format

Share Document