Analysis of Multi-Axial Fatigue Test Data Using a Path-Dependent Effective Stress/Strain Definition

Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Romesh C. Batra ◽  
Kamran Nikbin

Multi-axial fatigue life assessment is important in power generation, aerospace, automotive, and many other industries. The newly developed path-dependent multi-axial cycle counting and fatigue life assessment method has been shown effective for some applications. For instance, when stress range is used as the only driving force for fatigue failure, the method correlates high cycle fatigue test data well. The method consists of two parts: (1) maximum-range (or maximum distance) based cycle counting method, so that the method can be applied to 2-D and 3-D stress or strain space, as compared to the conventional rainflow counting method, which is based on the peak-valley concept, therefore, can be applied only to uniaxial (1-D) loadings; and (2) a path-length based stress range is used as the fatigue damage parameter replacing the traditional concept of stress or strain range, which is the difference between the peak value and the valley value of a cycle. This method has been justified using the classical fracture mechanics in multidimensional stress space. In this paper, we apply the method to analyze two additional classes of multi-axial fatigue test data reported in the literature: (1) low-cycle strain based tests, which has an important implications in high-temperature applications, such as piping/vessels in power industry, turbine, and automotive exhaust systems; (2) a series of test data that require an introduction of two parameters in either fatigue crack growth model or S-N curve based approach. For the latter, an incremental crack growth model reported earlier by the authors is recast to incorporate one additional stress based parameter to account either mean stress or maximum principle stress effects in multi-axial fatigue damage process, dependent upon material characteristics under consideration. The results show that strain-based low-cycle multi-axial fatigue data can be effectively correlated in the form of a single S-N curve using a path-dependent effective strain range definition. Furthermore, a two parameter based interpretation of the crack propagation model is capable of capturing effects of the maximum principle and mean stresses on multi-axial fatigue damage process associated with some of the test data. Finally, the physical basis of the method in these extended applications is discussed.

Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Litang Gao ◽  
Robert Kurth

Risk based treatment of degradation and failure in engineering components is an important topic in recent years with an emphasis on obtaining more detailed information for extreme events. Fatigue damage and life degradation caused by variable amplitude cyclic loading is dominated by such extreme events, and can be properly treated with the extreme value theory, which could help understand the damage nature of the fatigue damage process as well as to provide more efficient and robust approaches for engineering applications. In this paper, advanced extreme value theory is reviewed first. Methods such as peak counting, block maxima, and peaks over thresholds are investigated and compared in this paper with an emphasis on the relationship between the extreme value theory and the existing methods for fatigue life assessment. A few simple examples of uniaxial and multi-axial fatigue life assessment process are provided and the results are discussed. It is found that, if properly used, the extreme value theories can improve the efficiency of fatigue life assessment. Finally, a hybrid time- and frequency-based multi-axial fatigue life assessment procedure is proposed for wide band loadings.


2018 ◽  
Vol 165 ◽  
pp. 17006
Author(s):  
Chaotao Liu ◽  
Pingbo Wu ◽  
Fansong Li

This article mainly introduces a method of converting the acceleration signal of body bolster obtained by the circuit test into the load of the air spring seat of vehicle body. This method mainly decomposes the body's movement posture into the form of ups and downs, roll and nod. Then formulate the test plan according to the performance of the body fatigue test bench. The vertical and horizontal displacements and longitudinal force are used as control commands.Taking advantage of vehicle body fatigue test bench to reproduce these basic types of vibration. Establish the transfer function of the acceleration of the bolster and the displacement excitation of the air spring, and then obtaining the load of the air spring seat. Finally, the multi-axial fatigue life assessment of the vehicle body was performed using the obtained load combined with the Moment of Load Path Method and the Path-Dependent Maximum Range Method.


Author(s):  
Inge Lotsberg ◽  
Knut O. Ronold

Qualification of new characteristic S-N curves for fatigue life assessment of structures is considered to be a significant engineering challenge. First, representative fatigue test data for the actual structural connections have to be derived. Then these test data have to be transferred into characteristic S-N curves that represent a predefined probability of survival. Characteristic S-N curves are also often denoted design S-N curves as these curves are often used directly for fatigue life assessment of structures without application of a material factor. A few large scale tests can add significant confidence to a design S-N curve dependent on the type of structural detail to be designed. The reason for this is that a prototype test specimen can be fabricated in a similar way as the actual connection and it is similar in geometry, material characteristics, residual stress, and fabrication tolerances. In addition it can likely be subjected to a more relevant loading and boundary conditions as compared with that of small scale test specimens. When a limited number of test data are available, it is questioned how a characteristic S-N curve can be derived with a well defined probability of survival. The mentioned issues are further considered in this paper together with some recommendations on how to derive design S-N curves based on limited data.


2013 ◽  
Author(s):  
Jürgen Schreiber ◽  
Ulana Cikalova ◽  
Susanne Hillmann ◽  
Norbert Meyendorf ◽  
Jochen Hoffmann

Author(s):  
Torbjo̸rn Lindemark ◽  
Inge Lotsberg ◽  
Joong-Kyoo Kang ◽  
Kwang-Seok Kim ◽  
Narve Oma

Daewoo Shipbuilding & Marine Engineering Co., Ltd. (DSME), StatoilHydro and DNV established a common project to investigate the reason for the difference between calculated fatigue lives and the in-service experience and to assess the fatigue capacity of stiffener web connections subjected mainly to web frame shear stresses. The main objective of the work was to establish fatigue test data and perform numerical analysis of collar plate connections in order to provide improved confidence in analysis methodology for fatigue life assessment. Large scale fatigue tests of different types of connections were carried out to obtain fatigue test data of collar plate connections. Finite element analyses were carried out for comparison with fatigue test data and with measured stresses on the test model. Based on this work recommendations on fatigue design analysis of connections between stiffeners and web frames have been derived. The background for this is presented in this paper.


2011 ◽  
Vol 383-390 ◽  
pp. 2941-2944
Author(s):  
Wei Ming Du ◽  
Fei Xue

The crane reel is generally manufactured by section welding method when the diameter is over 380mm. With the cumulative fatigue damage principle which is based on stress S-N curve, the fatigue damage of one crane reel is analyzed by finite element method, the reel weld fatigue strength and fatigue life are calculated, and the simulation results are proved to be reliable. This method provides an efficient reference for crane reel design and residual life estimation.


Author(s):  
Joseph Batten ◽  
Chris Currie ◽  
Jonathan Mann ◽  
Andrew Morley

Abstract Even with improvements to remove excessive conservatisms, current fatigue assessment approaches can result in high Cumulative Usage Factors (CUFs) for some analyses. In order to improve plant availability from these assessments and mitigate future changes to design codes, an improvement in understanding in this area is desirable. Hence the proposal for a Life Assessment Methodology (LAM) was created. The LAM is a concept for an approach based on modelling each stage of fatigue life to predict total fatigue life, as a means of minimising conservatism in an assessment, where necessary. It should also be capable of incorporating statistical methods to assign reliability figures to calculated plant lives. This paper describes the proposed definition of the LAM and how a proof of concept version of the LAM was developed to assess the Bettis Bechtel Stepped Pipe (BBSP) test. The results were presented with two seeded cases (fixed inputs) and a range of lives corresponding to associated Target Reliabilities (TRs). The Best Estimate (BE) and TR associated lives produced were based on using the latest methods available for calculating Fatigue Initiation (FI) and Fatigue Crack Growth (FCG), whereas the seeded Effective Strain Range (ESR) comparison case used current deterministic assessment methods. The results for the case study concluded that there is a benefit to pursuing the development of the LAM when compared to traditional assessment methods. It highlighted and quantified the conservatism present in traditional assessment methods for these cases as well as the need to understand the required TR for a specific component as this can have a large effect on the predicted life. With further refinements to the method, a more realistic and robust output of the total fatigue life distribution (for specific cases) would be obtained, which in turn would allow us to better quantify the conservatism associated with a TR.


Author(s):  
Jorge Silva ◽  
Hossein Ghaednia ◽  
Sreekanta Das

Pipeline is the common mode for transporting oil, gas, and various petroleum products. Aging and corrosive environment may lead to formation of various defects such as crack, dent, gouge, and corrosion. The performance evaluation of field pipelines with crack defect is important. Accurate assessment of crack depth and remaining fatigue life of pipelines with crack defect is vital for pipeline’s structural integrity, inspection interval, management, and maintenance. An experimental based research work was completed at the University of Windsor for developing a semi-empirical model for estimating the remaining fatigue life of oil and gas pipes when a longitudinal crack defect has formed. A statistical approach in conjunction with fracture mechanics was used to develop this model. Statistical analysis was undertaken on CT specimen data to develop this fatigue life assessment model. Finite element method was used for determining the stress intensity factor. The fatigue life assessment model was then validated using full-scale fatigue test data obtained from 762 mm (30 inch) diameter X65 pipe. This paper discusses the test specimens and test data obtained from this study. Development and validation of the fatigue life assessment model is also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document