Fatigue Capacity of Stiffener to Web Frame Connections

Author(s):  
Torbjo̸rn Lindemark ◽  
Inge Lotsberg ◽  
Joong-Kyoo Kang ◽  
Kwang-Seok Kim ◽  
Narve Oma

Daewoo Shipbuilding & Marine Engineering Co., Ltd. (DSME), StatoilHydro and DNV established a common project to investigate the reason for the difference between calculated fatigue lives and the in-service experience and to assess the fatigue capacity of stiffener web connections subjected mainly to web frame shear stresses. The main objective of the work was to establish fatigue test data and perform numerical analysis of collar plate connections in order to provide improved confidence in analysis methodology for fatigue life assessment. Large scale fatigue tests of different types of connections were carried out to obtain fatigue test data of collar plate connections. Finite element analyses were carried out for comparison with fatigue test data and with measured stresses on the test model. Based on this work recommendations on fatigue design analysis of connections between stiffeners and web frames have been derived. The background for this is presented in this paper.

Author(s):  
Inge Lotsberg ◽  
Knut O. Ronold

Qualification of new characteristic S-N curves for fatigue life assessment of structures is considered to be a significant engineering challenge. First, representative fatigue test data for the actual structural connections have to be derived. Then these test data have to be transferred into characteristic S-N curves that represent a predefined probability of survival. Characteristic S-N curves are also often denoted design S-N curves as these curves are often used directly for fatigue life assessment of structures without application of a material factor. A few large scale tests can add significant confidence to a design S-N curve dependent on the type of structural detail to be designed. The reason for this is that a prototype test specimen can be fabricated in a similar way as the actual connection and it is similar in geometry, material characteristics, residual stress, and fabrication tolerances. In addition it can likely be subjected to a more relevant loading and boundary conditions as compared with that of small scale test specimens. When a limited number of test data are available, it is questioned how a characteristic S-N curve can be derived with a well defined probability of survival. The mentioned issues are further considered in this paper together with some recommendations on how to derive design S-N curves based on limited data.


2019 ◽  
Vol 19 ◽  
pp. 64-72
Author(s):  
Masaru Bodai ◽  
Yuichiro Nomura ◽  
Daiki Takagoshi ◽  
Seiji Asada ◽  
Kentaro Hayashi

1983 ◽  
Vol 105 (2) ◽  
pp. 184-188
Author(s):  
M. Kawahara ◽  
A. Katoh ◽  
T. Iwasaki

This paper describes an experimental study on fatigue strength of welded tubular T joints, performed in small and large-scale models fabricated from mild steel tubes. Fatigue tests were conducted under three kinds of loading patterns: constant amplitude loading, block programmed loading and random loading. In block programmed loading tests, the period of load sequence was varied, while the load spectrum was the same. Thus, the effects of the difference in load sequences upon fatigue lives were examined independently from the effect of load spectrum. Crack initiation life was hardly affected by the load sequence patterns. However, the crack penetration life or failure life were largely affected by types and periods of load sequences. The limit of validity of the Miner’s rule are discussed together with possible interpretations on the effects of the difference in load sequence patterns.


Author(s):  
Carol Johnston

The offshore environment contains many sources of cyclic loading. Standard design S-N curves, such as those in DNVGL-RP-C203, are usually assigned to ensure a particular design life can be achieved for a particular set of anticipated loading conditions. Girth welds are often the ‘weak link’ in terms of fatigue strength and so it is important to show that girth welds made using new procedures for new projects that are intended to be used in fatigue sensitive risers or flowlines do indeed have the required fatigue performance. Alternatively, designers of new subsea connectors, used for example in tendons for tension leg platforms, mooring applications or well-heads which will experience cyclic loading in service, also wish to verify the fatigue performance of their new designs. Often operators require contractors to carry out resonance fatigue tests on representative girth welds in order to show that girth welds made using new procedures qualify to the required design S-N curve. Operators and contractors must then interpret the results, which is not necessarily straightforward if the fatigue lives are lower than expected. Many factors influence a component’s fatigue strength so there is usually scatter in results obtained when a number of fatigue tests are carried out on real, production standard components. This scatter means that it is important first to carry out the right number of tests in order to obtain a reasonable understanding of the component’s fatigue strength, and then to interpret the fatigue test results properly. A working knowledge of statistics is necessary for both specifying the test programme and interpreting the test results and there is often confusion over various aspects of test specification and interpretation. This paper describes relevant statistical concepts in a way that is accessible to non-experts and that can be used, practically, by designers. The paper illustrates the statistical analysis of test data with examples of the ‘target life’ approach (that is now included in BS7608:2014 + A1) and the equivalent approach in DNVGL-RP-C203, which uses the stress modification factor. It gives practical examples to designers of a pragmatic method that can be used when specifying test programmes and interpreting the results obtained from tests carried out during qualification programmes, which for example, aim to determine whether girth welds made using a new procedure qualify to a particular design curve. It will help designers who are tasked with specifying test programmes to choose a reasonable number of test specimens and stress ranges, and to understand the outcome when results have been obtained.


Author(s):  
Zhigang Wei ◽  
Pingsha Dong ◽  
Romesh C. Batra ◽  
Kamran Nikbin

Multi-axial fatigue life assessment is important in power generation, aerospace, automotive, and many other industries. The newly developed path-dependent multi-axial cycle counting and fatigue life assessment method has been shown effective for some applications. For instance, when stress range is used as the only driving force for fatigue failure, the method correlates high cycle fatigue test data well. The method consists of two parts: (1) maximum-range (or maximum distance) based cycle counting method, so that the method can be applied to 2-D and 3-D stress or strain space, as compared to the conventional rainflow counting method, which is based on the peak-valley concept, therefore, can be applied only to uniaxial (1-D) loadings; and (2) a path-length based stress range is used as the fatigue damage parameter replacing the traditional concept of stress or strain range, which is the difference between the peak value and the valley value of a cycle. This method has been justified using the classical fracture mechanics in multidimensional stress space. In this paper, we apply the method to analyze two additional classes of multi-axial fatigue test data reported in the literature: (1) low-cycle strain based tests, which has an important implications in high-temperature applications, such as piping/vessels in power industry, turbine, and automotive exhaust systems; (2) a series of test data that require an introduction of two parameters in either fatigue crack growth model or S-N curve based approach. For the latter, an incremental crack growth model reported earlier by the authors is recast to incorporate one additional stress based parameter to account either mean stress or maximum principle stress effects in multi-axial fatigue damage process, dependent upon material characteristics under consideration. The results show that strain-based low-cycle multi-axial fatigue data can be effectively correlated in the form of a single S-N curve using a path-dependent effective strain range definition. Furthermore, a two parameter based interpretation of the crack propagation model is capable of capturing effects of the maximum principle and mean stresses on multi-axial fatigue damage process associated with some of the test data. Finally, the physical basis of the method in these extended applications is discussed.


Author(s):  
Xiaojun Yan ◽  
Jingxu Nie

A new experimental method, in which a full scale directionally solidified (DS) alloy turbine blade is loaded by a special design rig employing friction force and heated by eddy current induction, is proposed to conduct creep-fatigue life tests in this investigation. The method can take factors such as geometry, volume, especially cast procedures, etc., into creep-fatigue life assessment. Principle and design of the test rig are fully explained. Creep-fatigue tests of turbine blades made of DZ4 alloy (one type of DS alloys) were conducted and test data were analyzed. Life prediction based on test data of this investigation shows good agreement with actual flight experience of these blades. The method of this article provides a new way to estimate the potential creep-fatigue or low cycle fatigue life for turbine blades.


Author(s):  
Feargal Brennan ◽  
Athanasios Kolios ◽  
Isaac Tavares

Size effects are extremely important to understand and accounting for their inclusion in fatigue tests is imperative in order to produce meaningful results. This can however be problematic as in dealing with very large offshore structural details and sections, testing to destruction can involve extremely large loads and gripping arrangements that can be cost prohibitive. It is therefore important to be able to simplify test specimens so that the local detail is retained without losing important size influences. This paper describes an investigation into whether or not extracted specimens from actual Offshore Wind Monopile Sections are in fact the best choice for fatigue testing. The results are analysed and a recommendation is made for future test programmes involving offshore wind monopile and tower applications.


Author(s):  
Xiaobin Le

Abstract One typical widely-accepted approach for describing the fatigue test data is the P-S-N curve approach. However, the P-S-N curve approach has some issues such as: (1) If there are only a few fatigue test data at a fatigue test stress level, the P-S-N curve approach is not valid due to the small sample size; (2) When the total number of fatigue tests under different stress levels might be larger such as more than 30 even though the number of fatigue tests at the same stress level is small, the P-S-N curve cannot be used to analyze such set of fatigue data; (3) It is difficult to calculate the reliability of a component under a cyclic stress level when the probabilistic distribution function under this stress level is not available in the P-S-N curves. The author has proposed the K-D probabilistic fatigue damage model (K-D model) to overcome those issues. The 6061-T6 10-gauge sheet-type flat fatigue specimen was designed, manufactured, and tested on the Instron 8081 fatigue test machine to verify this K-D model. The fatigue tests were under five different cyclic axial loadings with a total of 195 tests. In this paper, the fatigue test data will be analyzed by the P-S-N curve approach and the K-D model. The systematic comparisons between the P-S-N curve approach and the K-D model have approved and verified that the K-D model can be used to analyze and to describe the fatigue test data under all different fatigue stress levels and can be used to calculate the reliability of a component under any type of cyclic fatigue loading.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xiangwei Li ◽  
Ji Fang ◽  
Xiaoli Guan

AbstractWith the popularization of friction stir welding (FSW), 5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process. In this study, the fatigue life of friction stir welding with two materials, i.e., 5083-H321 and 6061-T6 aluminum alloy, are studied. Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples. The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials. The fatigue resistances of these two materials were compared and a unified principal S–N curve equation was fitted. Two key parameters of the unified principal S–N curve obtained by fitting, Cd is 4222.5, and h is 0.2693. A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S–N curve. Two main fatigue tests of bending and tension were used to verify the unified principal S–N curve equation. The results show that the fatigue life calculated by the unified mean 50% master S–N curve parameters are the closest to the fatigue test results. The reliability, practicability, and generality of the master S–N curve fitting parameters were verified using the test data. The unified principal S–N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


Sign in / Sign up

Export Citation Format

Share Document