Residual Stress Profiles of Pipe Girth Weld Using a Stress Decomposition Method

Author(s):  
Huaguo Teng ◽  
Steve Bate

The application of procedures such as R6 or BS7910 for the structural assessment of defects in pressurised components containing residual stresses requires knowledge of the through-wall residual stress profile. Currently there is much interest in improving the residual stress profiles that are provided in the procedures. In this paper we present an improved analysis of residual stresses of the pipe girth welds by applying the developed heuristic method to one set of extended residual stress measurement data. The through-thickness residual stress is decomposed into three stress components: membrane, bending and self-equilibrating. The heuristic method was applied to the three components separately, so that the residual stress profile was a combination of the three stress components. This form provides not only a clear physical basis for the residual stress profile, but is also convenient for defect assessment where only the membrane and bending stress components are important.

Author(s):  
Huaguo Teng ◽  
Steve K. Bate ◽  
David W. Beardsmore

In this paper we present an improved analysis of residual stress data of a pipe girth weld by applying the developed heuristic method to one set of high-quality residual stress measurement data. The through-thickness residual stress is expressed as a parametric function form which is a combination of three stress components: membrane, bending and self-equilibrating. This parametric function form provides not only a clear physical basis for the residual stress profile, but is also closely related to two important governing parameters, i.e. the pipe geometry and the welding heat input. The residual stress profiles obtained are also compared with results predicted by the Bayesian method as well as the profiles from the UK R6 procedure and the US API 579 code.


Author(s):  
P. Dong ◽  
Z. Cao

In this paper, the mechanics basis underlying the parametric through-thickness residual stress profiles proposed for the revised API 579 Appendix E are presented. The proposed residual stress profiles are governed to a large extent by a unified parametric function form valid for a broad spectrum of pipe and vessel welds. The functional relationship is established based on the comprehensive knowledge base developed within a recent major international joint industry project (JIP) under the auspice of Pressure Vessel Research Council (PVRC) and a large amount of residuals stress measurement data from recent literature. One of the most important features associated with the proposed revision is that residual stress profile is uniquely determined by two important sets of governing parameters: (1) parameters relevant to pipe geometry, i.e., r/t and t; (2) a parameter related to welding linear heat input Q (J/mm), referred to as the characteristic heat input Qˆ which has a dimension of J/mm3. As a result, the corresponding through-wall residual stress distribution exhibits a continuous change as a function of r/t, t, and Qˆ, instead of falling into a few discrete and unrelated profiles, as seen in the current Codes and Standards.


Author(s):  
A. W. Warren ◽  
Y. B. Guo

Hard turning and grinding are competitive processes in many cases for manufacturing various mechanical products. Product performance is highly dependent on the process induced residual stresses. However, there exist some inconsistence regarding the true residual stress profiles generated by hard turning and grinding with and without the presence of a white layer. This study aims to clarify the pressing issues via an extensive residual stress measurement for five surface types: hard turned fresh (HTF), hard turned with a white layer (HTWL), ground fresh (GF), ground with a white layer (GWL), and as heat treated. The x-ray diffraction data revealed distinct differences in the residual stress profiles between the turned and ground surfaces. Specifically, the key findings are: (i) HTF surfaces generate a “hook” shaped residual stress profile characterized by surface compressive residual stress and maximum compressive residual stress in the subsurface, while GF surfaces only generate maximum compressive residual stress at the surface; (ii) HTWL surfaces generate a high tensile stress in the white layer, but has highly compressive residual stress in the deeper subsurface than the HTF surface; (iii) GWL surfaces only shift the residual stress to more tensile but does not affect the basic shape of the profile; (iv) Tensile residual stress in the HTWL surface is higher than that for the GWL one. However, the residual stress for the ground white layer does not become compressive and remains tensile in the subsurface; (v) Elliptical curve fitting is necessary for measuring residual stress for the HTWL surface due to the presence of shear stress induced severe Ψ splitting; (vi) Residual stresses by grinding show more scattering than those by hard turning; and (vii) Machining is the deterministic factor for the resulting residual stress magnitudes and profiles compared with the minor influence of initial residual stress by heat treatment.


2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.


Author(s):  
Ankitkumar P. Dhorajiya ◽  
Mohammed S. Mayeed ◽  
Gregory W. Auner ◽  
Ronald J. Baird ◽  
Golam M. Newaz ◽  
...  

Detailed analysis of residual stress profile due to laser micro-joining of two dissimilar biocompatible materials, polyimide (PI) and titanium (Ti), is vital for the long-term application of bio-implants. In this work, a comprehensive three dimensional (3D) transient model for sequentially coupled thermo-mechanical analysis of transmission laser micro-joining of two dissimilar materials has been developed by using the finite element (FE) code ABAQUS, along with a moving Gaussian laser heat source. The laser beam (wavelength of 1100 nm and diameter of 0.2 mm), moving at an optimized velocity, passes through the transparent PI, gets absorbed by the absorbing Ti, and eventually melts the PI to form the bond. The laser bonded joint area is 6.5 mm long by 0.3 mm wide. First the transient heat transfer analysis is performed and the nodal temperature profile has been achieved, and then used as an input for the residual stress analysis. Non-uniform mixed meshes have been used and optimized to formulate the 3D FE model and ensure very refined meshing around the bond area. Heat resistance between the two materials has been modeled by using the thermal surface interaction technique, and melting and solidification issues have been approximated in the residual stress analysis by using the appropriate material properties at corresponding temperature. First the model has been used to observe a good bonding condition with the laser parameters like laser traveling speed, power, and beam diameter (burnout temperature of PI > maximum temperature of PI achieved during heating > melting temperature of PI) and a good combination has been found to be 100 mm/min, 3.14 W and 0.2 mm respectively. Using this combination of parameters in heating, the residual stress profile of the laser-micro-joint has been calculated using FE model after cooling the system down to room temperature of 27 °C and analyzed in detail by plotting the stress profiles on the Ti and PI surfaces. Typically the residual stress profiles on the PI surface show low value in the middle, increase to higher values at about 160 μm from the centerline of the laser travel symmetrically at both sides, and to the contrary, on Ti surface show higher values near the centerline of traveling laser beam. The residual stresses have slowly dropped away on both the surfaces as the distance from the bond region increased further. Maximum residual stresses on both the Ti and PI surfaces are at the end of the laser travel, and are in the orders of the yield stresses of respective materials.


Author(s):  
Pingsha Dong ◽  
Shaopin Song ◽  
Jinmiao Zhang

This paper aims to provide a detailed assessment of some of the existing residual stress profiles prescribed in widely used fitness-for-service assessment codes and standards, such as BS 7910 Appendix Q, by taking advantage of some comprehensive residual studies that become available recently. After presenting a case study on which residual stress measurements are available for validating finite element based residual stress solution procedure, residual stress profiles stipulated in BS 7910 for girth welds are evaluated in the context of a series of parametric finite element results and a shell theory based full-field residual stress estimation scheme. As a result, a number of areas for improvement in residual stress profile development are identified, including some specific considerations on how to attain some of these improvements.


Author(s):  
H. Teng ◽  
S. K. Bate ◽  
D. W. Beardsmore

In this paper we present a recently developed heuristic method for statistical analysis of residual stress that is based on a combination of the weighted least-squares method and the application of expert judgement. The least-squares method allows a model of the best residual stress profile to be determined as a linear combination of basis functions; the expert knowledge gives the flexibility of applying expert judgement to determine the weights from the observed scatter in the residual stress data. The heuristic method has been applied to a set of measurement data of a Welded Bead-on-Plate specimen. The results show that with the heuristic method, it is possible to obtain less conservative residual stress profile to a known confidence level.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yao Ren ◽  
Anna Paradowska ◽  
Bin Wang ◽  
Elvin Eren ◽  
Yin Jin Janin

This research investigated the effects of global (in other words, furnace-based) and local post weld heat treatment (PWHT) on residual stress (RS) relaxation in API 5L X65 pipe girth welds. All pipe spools were fabricated using identical pipeline production procedures for manufacturing multipass narrow gap welds. Nondestructive neutron diffraction (ND) strain scanning was carried out on girth welded pipe spools and strain-free comb samples for the determination of the lattice spacing. All residual stress measurements were carried out at the KOWARI strain scanning instrument at the Australian Nuclear Science and Technology Organization (ANSTO). Residual stresses were measured on two pipe spools in as-welded condition and two pipe spools after local and furnace PWHT. Measurements were conducted through the thickness in the weld material and adjacent parent metal starting from the weld toes. Besides, three line-scans along pipe length were made 3 mm below outer surface, at pipe wall midthickness, and 3 mm above the inner surface. PWHT was carried out for stress relief; one pipe was conventionally heat treated entirely in an enclosed furnace, and the other was locally heated by a flexible ceramic heating pad. Residual stresses measured after PWHT were at exactly the same locations as those in as-welded condition. Residual stress states of the pipe spools in as-welded condition and after PWHT were compared, and the results were presented in full stress maps. Additionally, through-thickness residual stress profiles and the results of one line scan (3 mm below outer surface) were compared with the respective residual stress profiles advised in British Standard BS 7910 “Guide to methods for assessing the acceptability of flaws in metallic structures” and the UK nuclear industry's R6 procedure. The residual stress profiles in as-welded condition were similar. With the given parameters, local PWHT has effectively reduced residual stresses in the pipe spool to such a level that it prompted the thought that local PWHT can be considered a substitute for global PWHT.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


Author(s):  
Kunyang Lin ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

Machining induced residual stresses have an important effect on the surface integrity. Effects of various factors on the distribution of residual stress profiles induced by different machining processes have been investigated by many researchers. However, the initial residual, as one of the important factor that affect the residual stress profile, is always been ignored. In this paper, the residual stress field induced by the quenching process is simulated by the FEM software as the initial condition. Then the initial residual stress field is used to study the residual stress redistribution after the machining process. The influence of initial stress on the stress formation is carried out illustrating with the mechanical and thermal loads during machining processes. The effects of cutting speed on the distribution of residual stress profile are also discussed. These results are helpful to understand how initial residual stresses are redistributed during machining better. Furthermore, the results in the numerical study can be used to explain the machining distortion problem caused by residual stress in the further work.


Sign in / Sign up

Export Citation Format

Share Document