Surface Modification Analysis after Shot Peening of AA 7075 in Different States

2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.

2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


Author(s):  
Rajesh Prasannavenkatesan ◽  
David L. McDowell

Using a three-dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate the effects of shot peening on inducing initial compressive residual stresses. The model is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses in shot peened lath martensitic gear steel in the high cycle fatigue (HCF) regime. A strategy is identified to model both shot peening and cyclic loading processes for polycrystalline ensembles. The relaxation of residual stress field during cyclic bending is analyzed for strain ratios Rε=0 and −1 for multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the relaxation of residual stresses in HCF. For the case of Rε=−1, the cyclic plasticity occurs throughout the microstructure (macroplasticity) during the first loading cycle, resulting in substantial relaxation of compressive residual stresses at the surface and certain subsurface depths. The initial magnitude of residual stress is observed to influence the degree (percentage) of relaxation. Describing the differential intergranular yielding is necessary to capture the experimentally observed residual stress relaxation trends.


Author(s):  
Ankitkumar P. Dhorajiya ◽  
Mohammed S. Mayeed ◽  
Gregory W. Auner ◽  
Ronald J. Baird ◽  
Golam M. Newaz ◽  
...  

Detailed analysis of residual stress profile due to laser micro-joining of two dissimilar biocompatible materials, polyimide (PI) and titanium (Ti), is vital for the long-term application of bio-implants. In this work, a comprehensive three dimensional (3D) transient model for sequentially coupled thermo-mechanical analysis of transmission laser micro-joining of two dissimilar materials has been developed by using the finite element (FE) code ABAQUS, along with a moving Gaussian laser heat source. The laser beam (wavelength of 1100 nm and diameter of 0.2 mm), moving at an optimized velocity, passes through the transparent PI, gets absorbed by the absorbing Ti, and eventually melts the PI to form the bond. The laser bonded joint area is 6.5 mm long by 0.3 mm wide. First the transient heat transfer analysis is performed and the nodal temperature profile has been achieved, and then used as an input for the residual stress analysis. Non-uniform mixed meshes have been used and optimized to formulate the 3D FE model and ensure very refined meshing around the bond area. Heat resistance between the two materials has been modeled by using the thermal surface interaction technique, and melting and solidification issues have been approximated in the residual stress analysis by using the appropriate material properties at corresponding temperature. First the model has been used to observe a good bonding condition with the laser parameters like laser traveling speed, power, and beam diameter (burnout temperature of PI > maximum temperature of PI achieved during heating > melting temperature of PI) and a good combination has been found to be 100 mm/min, 3.14 W and 0.2 mm respectively. Using this combination of parameters in heating, the residual stress profile of the laser-micro-joint has been calculated using FE model after cooling the system down to room temperature of 27 °C and analyzed in detail by plotting the stress profiles on the Ti and PI surfaces. Typically the residual stress profiles on the PI surface show low value in the middle, increase to higher values at about 160 μm from the centerline of the laser travel symmetrically at both sides, and to the contrary, on Ti surface show higher values near the centerline of traveling laser beam. The residual stresses have slowly dropped away on both the surfaces as the distance from the bond region increased further. Maximum residual stresses on both the Ti and PI surfaces are at the end of the laser travel, and are in the orders of the yield stresses of respective materials.


2013 ◽  
Vol 768-769 ◽  
pp. 66-71 ◽  
Author(s):  
Diego Cecchin ◽  
Cristy Leonor Azanza Ricardo ◽  
Mirco D'Incau ◽  
Michele Bandini ◽  
Paolo Scardi

Aluminum alloy (Al-7075-T6) samples were analyzed to determine the in-depth residual stress profile induced by a shot-peening treatment. The influence of coverage degree and Almen intensity on the surface residual stress and on the sub-surface residual stress gradient was investigated. Residual stress profiles were obtained using three different techniques: (i) standard laboratory X-ray diffraction (XRD) residual stress analysis with progressive chemical layer-removal; (ii) XRD residual stress analysis with synchrotron radiation using different X-ray energies, thus changing the penetration depths, and (iii) Blind Hole Drilling (BHD). A comprehensive comparison of the results given by the used techniques is shown.


2014 ◽  
Vol 996 ◽  
pp. 609-614 ◽  
Author(s):  
Lin Peng Ru ◽  
Johan Moverare ◽  
Pajazit Avdovic ◽  
Annethe Billenius ◽  
Zhe Chen

In this paper we investigated the influence of vibratory stress relieving technique, which is widely used for stress relaxation of weld and casting components/structure, on machining residual stresses in a ring-component of 12%Cr-steel. It was shown that the employed vibratory treatment, without significantly altering the microstructure, turned the surface layer from tension into compression but retained the compressive residual stresses in the subsurface. In comparison, a stress relieving heat treatment, included as a reference in the study, removed completely the surface tensile residual stresses and reduced the subsurface compressive residual stresses to a low level. Significant microstructural changes in the form of recrystallization also occurred in a thin surface layer of the machining affected zone after the heat treatment.


Author(s):  
Huaguo Teng ◽  
Steve Bate

The application of procedures such as R6 or BS7910 for the structural assessment of defects in pressurised components containing residual stresses requires knowledge of the through-wall residual stress profile. Currently there is much interest in improving the residual stress profiles that are provided in the procedures. In this paper we present an improved analysis of residual stresses of the pipe girth welds by applying the developed heuristic method to one set of extended residual stress measurement data. The through-thickness residual stress is decomposed into three stress components: membrane, bending and self-equilibrating. The heuristic method was applied to the three components separately, so that the residual stress profile was a combination of the three stress components. This form provides not only a clear physical basis for the residual stress profile, but is also convenient for defect assessment where only the membrane and bending stress components are important.


2021 ◽  
Vol 5 (2) ◽  
pp. 39
Author(s):  
Benjamin James Ralph ◽  
Karin Hartl ◽  
Marcel Sorger ◽  
Andreas Schwarz-Gsaxner ◽  
Martin Stockinger

The shot peening process is a common procedure to enhance fatigue strength on load-bearing components in the metal processing environment. The determination of optimal process parameters is often carried out by costly practical experiments. An efficient method to predict the resulting residual stress profile using different parameters is finite element analysis. However, it is not possible to include all influencing factors of the materials’ physical behavior and the process conditions in a reasonable simulation. Therefore, data-driven models in combination with experimental data tend to generate a significant advantage for the accuracy of the resulting process model. For this reason, this paper describes the development of a grey-box model, using a two-dimensional geometry finite element modeling approach. Based on this model, a Python framework was developed, which is capable of predicting residual stresses for common shot peening scenarios. This white-box-based model serves as an initial state for the machine learning technique introduced in this work. The resulting algorithm is able to add input data from practical residual stress experiments by adapting the initial model, resulting in a steady increase of accuracy. To demonstrate the practical usage, a corresponding Graphical User Interface capable of recommending shot peening parameters based on user-required residual stresses was developed.


Author(s):  
Muhammad Junaid Afzal ◽  
Ramin Hajavifard ◽  
Johannes Buhl ◽  
Frank Walther ◽  
Markus Bambach

AbstractDisc springs are machine elements that are used when high forces need to be supplied and in limited installation space. They need to fulfil high demands on the stability of the spring characteristics, reliability and lifetime. In corrosive environments, metastable austenitic stainless steels (MASS) disc springs are often used. Tensile stresses that occur during service limit the lifetime of disc springs. Usually, their durability is enhanced by generating favorable compressive residual stresses using shot peening operations. Such operations lead to extra efforts and additional production costs. In this study, the adaptive and targeted generation of residual stresses via incremental sheet forming (ISF) is investigated as alternative to shot peening focusing on EN 1.4310 and EN 1.4401 stainless steel. Previous work has shown that ISF is capable of controlling the radial and tangential stresses in the springs. However, no analysis of the influence of the residual stress state in the rolled sheet strips and the ISF process parameters was performed. The goal of the current work is to analyze the evolution of residual stress during rolling and subsequent incremental forming of disc springs. In order to examine the role of dissipation and temperature increases in the rolling process, sheet blanks rolled at room and elevated temperature are analyzed. The characteristics of the compressive residual stresses induced by ISF are studied for different process parameters. X‑ray diffraction is used to investigate the buildup of these stresses. Using ISF, the generation of compressive residual stresses can be integrated into the forming process of disc springs, and further post-treatment may be skipped. The results show that the residual stress state in the rolled material is crucial, which requires tight control of the rolling temperature. Another result is that ISF is able to yield high compressive residual stresses and improved spring characteristics when small tool diameters and step-down values are used.


2016 ◽  
Vol 674 ◽  
pp. 103-108 ◽  
Author(s):  
Tuomas Jokiaho ◽  
Tuomo Saarinen ◽  
Suvi Santa-Aho ◽  
Pasi Peura ◽  
Minnamari Vippola

Flame cutting is commonly used thermal cutting method in metal industry when processing thick steel plates. Cutting is performed with controlled flame and oxygen jet, which burns steel and forms cutting edge. Flame cutting process is based on controlled chemical reaction between steel and oxygen at elevated temperature. Flame cutting of thick wear-resistant steels is challenging while it can result in cracks on and under the cut edge. Flame cutting causes uneven temperature distribution in the plate, which can introduce residual stresses. In addition, heat affected zone (HAZ) is formed and there both volume and microstructural changes as well as hardness variations are taking place. Therefore flame cutting always causes thermal stress, shape changes and consequently residual stresses to the material. Material behaviour under thermal and mechanical loading depends on the residual stress state of the material. Due to this, it is important to be able to measure the residual stresses. The aim of this study was to examine residual stresses on the cutting edge as a function of different flame cutting parameters. Also resulting microstructures and hardness values were verified. Varying parameters were the cutting speed, preheating and post heating procedures. Flame cut samples were investigated with X-ray diffraction method to produce residual stress profiles of the heat affected surface layer. Results indicated that different cutting parameters provide different residual stress profiles and that these profiles can be modified by changing the cutting speed and pre-or post-treatment procedures. Cutting parameters also affect the depth of the reaustenized region in the surface. The results correlate well with the actual industrial flame cutting and thus they provide an effective tool for optimizing the flame cutting process parameters.


2011 ◽  
Vol 681 ◽  
pp. 374-380 ◽  
Author(s):  
S. Van Wijk ◽  
Manuel François ◽  
E. Sura ◽  
M. Frabolot

Carbonitriding followed by shot peening is an important industrial process to improve the mechanical properties of components, especially by producing compressive residual stresses. In addition, a high hardness and strength produced by this process enhances the surface properties and leads also a high resistance to fatigue. In this study, shot peening with different parameters have been employed to treat the carbonitrided specimens. The measurements of residual stress and residual austenite were performed by X-ray diffraction. It is shown, with a simple eigenstrain model, that residual austenite transformation under shot impact contributes to a significant fraction of residual stresses. When the material (750 HV) is peened with 800 HV shot, it represents about 50%, the remaining is due to plasticity. When it is peened with 640HV shot, 100% of residual stresses can be explained by austenite transformation.


Sign in / Sign up

Export Citation Format

Share Document