Dynamics of a Pipe Conveying Fluid Flexibly Supported at the Ends

Author(s):  
Mojtaba Kheiri ◽  
Michael P. Païdoussis ◽  
Giorgio Costa del Pozo

The subject of this paper is the study of dynamics and stability of a pipe flexibly supported at its ends and conveying fluid. First, the equation of motion of the system is derived via the extended form of Hamilton’s principle for open systems. In the derivation, the effect of flexible supports, modelled as linear translational and rotational springs, is appropriately considered in the equation of motion rather than in the boundary conditions. The resulting equation of motion is then discretized via the Galerkin method in which the eigenfunctions of a free-free Euler-Bernoulli beam are utilized. Thus, a general set of second-order ordinary differential equations emerge, in which, by setting the stiffness of the end-springs suitably, one can readily investigate the dynamics of various systems with either classical or non-classical boundary conditions.

Author(s):  
Daniel Cuhat ◽  
Patricia Davies

Abstract The principle of modal sensing is based on the use of a shaped PVDF piezoelectric film measuring strains on the surface of a bending beam and acting as a modal filter. So far, the use of this type of sensors has remained confined to studies involving uniform structures with classical boundary conditions. The goal of this paper is to present an experimental methodology for the design of a shaped modal sensor applicable to an non-uniform Euler-Bernoulli beam with arbitrary boundary conditions. This approach is illustrated with test data collected on a cantilever beam structure with a laser Doppler velocimeter.


2021 ◽  
Author(s):  
Kan-Chen Jane Wu

The objective of this study is to investigate the response of an Euler-Bernoulli beam under a force or mass traversing with constant velocity. Simply-supported and clamped-clamped boundary conditions are considered. The linear strain-displacement scenario is applied to both boundary conditions, while the von Kármán nonlinear scenario is applied only to the former boundary condition. The governing equation of motion is derived via the extended Hamilton's principle. Simulations are performed with the fourth-order Runge-Kutta method via Matlab software. The equation of motion is first validated and then used to investigate the effects of the beam second moment of area, the magnitude of the traversing velocity, and centrifugal and gyroscopic forces.


2019 ◽  
Vol 25 (18) ◽  
pp. 2473-2479 ◽  
Author(s):  
Paulo J. Paupitz Gonçalves ◽  
Michael J. Brennan ◽  
Andrew Peplow ◽  
Bin Tang

There are well-known expressions for natural frequencies and mode shapes of a Euler-Bernoulli beam which has classical boundary conditions, such as free, fixed, and pinned. There are also expressions for particular boundary conditions, such as attached springs and masses. Surprisingly, however, there is not a method to calculate the natural frequencies and mode shapes for a Euler–Bernoulli beam which has any combination of linear boundary conditions. This paper describes a new method to achieve this, by writing the boundary conditions in terms of dynamic stiffness of attached elements. The method is valid for any boundaries provided they are linear, including dissipative boundaries. Ways to overcome numerical issues that can occur when computing higher natural frequencies and mode shapes are also discussed. Some examples are given to illustrate the applicability of the proposed method.


2021 ◽  
Author(s):  
Kan-Chen Jane Wu

The objective of this study is to investigate the response of an Euler-Bernoulli beam under a force or mass traversing with constant velocity. Simply-supported and clamped-clamped boundary conditions are considered. The linear strain-displacement scenario is applied to both boundary conditions, while the von Kármán nonlinear scenario is applied only to the former boundary condition. The governing equation of motion is derived via the extended Hamilton's principle. Simulations are performed with the fourth-order Runge-Kutta method via Matlab software. The equation of motion is first validated and then used to investigate the effects of the beam second moment of area, the magnitude of the traversing velocity, and centrifugal and gyroscopic forces.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Yan-Shin Shih ◽  
Chen-Yuan Chung

This paper investigates the dynamic response of the cracked and flexible connecting rod in a slider-crank mechanism. Using Euler–Bernoulli beam theory to model the connecting rod without a crack, the governing equation and boundary conditions of the rod's transverse vibration are derived through Hamilton's principle. The moving boundary constraint of the joint between the connecting rod and the slider is considered. After transforming variables and applying the Galerkin method, the governing equation without a crack is reduced to a time-dependent differential equation. After this, the stiffness without a crack is replaced by the stiffness with a crack in the equation. Then, the Runge–Kutta numerical method is applied to solve the transient amplitude of the cracked connecting rod. In addition, the breathing crack model is applied to discuss the behavior of vibration. The influence of cracks with different crack depths on natural frequencies and amplitudes is also discussed. The results of the proposed method agree with the experimental and numerical results available in the literature.


2018 ◽  
Vol 24 (3) ◽  
pp. 559-572 ◽  
Author(s):  
Yuanbin Wang ◽  
Kai Huang ◽  
Xiaowu Zhu ◽  
Zhimei Lou

Eringen’s nonlocal differential model has been widely used in the literature to predict the size effect in nanostructures. However, this model often gives rise to paradoxes, such as the cantilever beam under end-point loading. Recent studies of the nonlocal integral models based on Euler–Bernoulli beam theory overcome the aforementioned inconsistency. In this paper, we carry out an analytical study of the bending problem based on Eringen’s two-phase nonlocal model and Timoshenko beam theory, which accounts for a better representation of the bending behavior of short, stubby nanobeams where the nonlocal effect and transverse shear deformation are significant. The governing equations are established by the principal of virtual work, which turns out to be a system of integro-differential equations. With the help of a reduction method, the complicated system is reduced to a system of differential equations with mixed boundary conditions. After some detailed calculations, exact analytical solutions are obtained explicitly for four types of boundary conditions. Asymptotic analysis of the exact solutions reveals clearly that the nonlocal parameter has the effect of increasing the deflections. In addition, as compared with nonlocal Euler–Bernoulli beam, the shear effect is evident, and an additional scale effect is captured, indicating the importance of applying higher-order beam theories in the analysis of nanostructures.


Author(s):  
Chang-New Chen

The influence of axial force on the vibration of Euler-Bernoulli beam structures is analyzed by differential quadrature element method (DQEM) using extended differential quadrature (EDQ). The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Chang-New Chen

The influence of axially distributed force on the vibration of Euler-Bernoulli beam structures is analyzed by differential quadrature element method (DQEM) using extended differential quadrature (EDQ). The DQEM uses the differential quadrature to discretize the governing differential eigenvalue equation defined on each element, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of the beam. Numerical results solved by the developed numerical algorithm are presented. The convergence of the developed DQEM analysis model is efficient.


Author(s):  
Anooshiravan Farshidianfar ◽  
Ali A. Ghassabi ◽  
Mohammad H. Farshidianfar ◽  
Mohammad Hoseinzadeh

The free vibration and instability of fluid-conveying multi-wall carbon nanotubes (MWCNTs) are studied based on an Euler-Bernoulli beam model. A theory based on the transfer matrix method (TMM) is presented. The validity of the theory was confirmed for MWCNTs with different boundary conditions. The effects of the fluid flow velocity were studied on MWCNTs with simply-supported and clamped boundary conditions. Furthermore, the effects of the CNTs’ thickness, radius and length were investigated on resonance frequencies. The CNT was found to posses certain frequency behaviors at different geometries. The effect of the damping corriolis term was studied in the equation of motion. Finally, a useful simplification is introduced in the equation of motion.


Sign in / Sign up

Export Citation Format

Share Document