Applicability of Fracture Toughness Curves Developed for Japanese Pressure Vessel Steels to Structural Integrity Evaluation

Author(s):  
Kentaro Yoshimoto ◽  
Takatoshi Hirota ◽  
Hiroyuki Sakamoto

Surveillance tests have been conducted on Japanese Pressurized Water Reactor (PWR) plants for more than 40 years to monitor irradiation embrittlement of reactor pressure vessel (RPV) beltline materials. Fracture toughness specimens are contained as well as tensile and Charpy impact specimens in a surveillance capsule and utilized for structural integrity evaluation. Therefore, a lot of fracture toughness data have been obtained by fracture toughness tests using such as Compact Tension (CT) and Wedge Opening Loading (WOL) specimens. More than one thousand data have been accumulated for both unirradiated and irradiated materials until 2013. Additionally, in terms of fracture toughness, Master Curve (MC) concept has been widely used for fracture toughness transition curve expression of ferritic steels. Considering such a situation, the new fracture toughness curves using Tr30, which denotes Charpy V-notch 30ft-lb transition temperature, as an indexing parameter were developed based on MC concept depending on product form for Japanese RPV steels in 2014. In this study, applicability of the newly developed curves of Japanese RPV steels to structural integrity evaluation is investigated. Especially, this paper focused on conservatism of the curves and the adequate margin to be added in evaluation of RPV integrity employing statistical methodology.

Author(s):  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang

The normal reactor startup (heat-up) and shut-down (cool-down) operation limits are defined by the ASME Code Section XI-Appendix G, to ensure the structural integrity of the embrittled nuclear reactor pressure vessels (RPVs). In the paper, the failure risks of a Taiwan domestic pressurized water reactor (PWR) pressure vessel under various pressure-temperature limit operations are analyzed. Three types of pressure-temperature limit curves established by different methodologies, which are the current operation limits of the domestic RPV based on the KIa fracture toughness curve in 1998 or earlier editions of ASME Section XI-Appendix G, the recently proposed limits according to the KIC fracture toughness curve after the 2001 edition of ASME Section XI-Appendix G, and the risk-informed revision method proposed in MRP-250 report that provides more operational flexibility, are considered. The ORNL’s probabilistic fracture mechanics code, FAVOR, is employed to perform a series of fracture probability analyses for the RPV at multiple levels of embrittlement under such pressure-temperature limit transients. The analysis results indicate that the pressure-temperature operation limits associated with more operational flexibility will result in higher failure risks to the RPV. The shallow inner surface breaking flaw due to the clad fabrication defect is the most critical factor and dominates the failure risk of the RPV under pressure-temperature limit operations. Present work can provide a risk-informed reference for the safe operation and regulation of PWRs in Taiwan.


Author(s):  
Hsoung-Wei Chou ◽  
Yu-Yu Shen ◽  
Chin-Cheng Huang

To ensure the structural integrity of the embrittled reactor pressure vessels (RPVs) during startup or shutdown operation, the pressure-temperature (P-T) limits are mainly determined by the fracture toughness of beltline region material with the highest level of neutron embrittlement. However, other vessel parts such as nozzles with structural discontinuities may affect the limits due to the higher stress concentration, even though the neutron embrittlement is insignificant. Therefore, not only beltline material with the highest reference temperature, but also other components with structural discontinuities have to be considered for the development of P-T limits of RPV. In the paper, the pressure-temperature operational limits of a Taiwan domestic pressurized water reactor (PWR) pressure vessel considering beltline and extended beltline regions are established per the procedure of ASME Code Section XI-Appendix G. The three-dimensional finite element models of PWR inlet and outlet nozzles above the beltline region are also built to analyze the pressure and thermal stress distributions for P-T limits calculation. The analysis results indicate that the cool-down P-T limit of the domestic PWR vessel is still dominated by the beltline region, but the heat-up limit is partially controlled by the extended beltline region. On the other hand, the relations of reference temperature between nozzles and beltline region on the P-T limits are also discussed. Present work could be a reference for the regulatory body and is also helpful for safe operation of PWRs in Taiwan.


Author(s):  
Jinya Katsuyama ◽  
Tohru Tobita ◽  
Yutaka Nishiyama ◽  
Kunio Onizawa

In order to monitor the neutron irradiation embrittlement of the reactor pressure vessel (RPV) steels for the safe operation of light-water reactors, surveillance specimens of representative materials, i.e. base metal, weld metal and heat affected zone (HAZ), are installed in the RPV during reactor operation according to the regulation. Among these materials, HAZ specimens exhibit a relatively large scatter in Charpy impact properties because of the microstructural inhomogeneity due to multi-pass welding. ASTM E185 and JSME S NC1 stipulate the exception of HAZ specimens from surveillance test. However, the technical basis on the exception has not been established. Therefore, we have started a research on the irradiation embrittlement in HAZ material of RPV steels. Typical RPV steel plates with different impurity levels and their weldments were fabricated to characterize the microstructures and subsequent mechanical properties of typical HAZ materials. Simulated HAZ materials were also made by applying several heat treatments representative of HAZ. Finite element analysis was conducted to draw maps of distributions of grain size and phase-fraction. Using simulated HAZ materials with different grain size and phase before irradiation, mechanical properties such as hardness, Charpy impact property and fracture toughness were measured in comparison with those of base metals and actual HAZ materials. Through the comparison, it was indicated that mechanical properties such as fracture toughness in some simulated HAZ materials were different from base metal and dependent significantly on the metallurgical structure, particularly phase but prior austenitic grain size. Higher fracture toughness in CGHAZ (Coarse-Grain HAZ) materials compared to base metal is due to mixed structure of martensite and lower-bainite phases. Upper-bainite phase in FGHAZ (Fine-Grain HAZ) and base materials causes lower fracture toughness than CGHAZ materials.


Author(s):  
Masaki Shimodaira ◽  
Tohru Tobita ◽  
Hisashi Takamizawa ◽  
Jinya Katsuyama ◽  
Satoshi Hanawa

Abstract According to JEAC4206-2016, in the structural integrity assessment of a reactor pressure vessel (RPV), the fracture toughness (KJc) should be higher than the stress intensity factor at the crack tip of a postulated underclad crack (UCC) near the inner surface of the RPV during a pressurized thermal shock event. Previous analytical studies show that the plastic constraint for UCC is lower than that for surface crack. Consequently, the apparent KJc for UCC is expected to be higher than that for surface crack. In this study, we performed three-point bending fracture toughness tests and finite element analyses (FEAs) for RPV steel containing a UCC or a surface crack to quantitatively investigate the effect of cladding on the plastic constraint and subsequent KJc evaluation. From the tests, we found that the apparent KJc for the UCC was considerably higher than that for the surface crack. Such a high KJc could be explained by the lower plastic constraint parameters, such as T-stress and Q-parameter, of the UCC compared with those for the surface crack. Additionally, local approach analysis showed that the KJc for the UCC was significantly higher than the master curve estimated from the fracture toughness tests using compact tension specimens.


Author(s):  
Hiroshi Matsuzawa ◽  
Toru Osaki

Nine Reactor Pressure Vessel (RPV) Steels and four RPV weld were irradiated up to 1.2 × 1024n/m2 fast neutron fluence (E>1MeV), and their fracture toughness and Charpy impact energy were measured. As chemical compositions, such as Cu, are known to affect the fracture toughness reduction due to neutron exposure, the above steels were fabricated by changing chemical composition widely to cover the chemical composition of the RPV materials of the operating Japanese nuclear power plants. 2.7 mm thick compact specimens were used to measure the upper shelf fracture toughness of highly irradiated materials, and their Charpy upper shelf energy was also measured. By correlating Charpy upper shelf energy to fracture toughness, the upper shelf fracture toughness evaluation formulae for highly irradiated reactor pressure vessel steels were developed. Both compact and V-notched Charpy impact specimens were irradiated in a test reactor. The fast neutron flux above 1MeV was about 5 × 1016n/(m2s). Charpy impact specimens made of Japanese PWR reference material containing 0.09w% Cu were irradiated simultaneously. The upper shelf energy of the reference material up to the medium fluence level showed little difference in the reduction of upper shelf energy to that which had been in the operating plant and which was irradiated to the same fluence. The developed correlation formulae have been adopted in the Japan Electric Association Code as new formulae to predict the fracture toughness in the upper shelf region of reactor pressure vessels. They will be applied to time limited ageing analysis of low upper shelf reactor pressure vessels in Japan, on a concrete technical basis in very high fluence regions.


2012 ◽  
Vol 9 (4) ◽  
pp. 104016 ◽  
Author(s):  
D. A. Thornton ◽  
D. A. Allen ◽  
A. P. Huggon ◽  
D. J. Picton ◽  
A. T. Robinson ◽  
...  

2005 ◽  
Vol 473-474 ◽  
pp. 287-292
Author(s):  
Péter Trampus

Structural integrity of the reactor pressure vessel of pressurized water reactors is one of the key safety issues in nuclear power operation. Integrity may be jeopardized during operational transients. The problem is compounded by radiation damage of the vessel structural materials. Structural integrity assessment as an interdisciplinary field is primarily based on materials science and fracture mechanics. The paper gives an overview on the service induced damage processes and associated changes of mechanical properties, the prediction of degradation and the assessment of the entire component against brittle fracture with a special focus on how the evolution of materials science and engineering has contributed to reactor vessel structural integrity assessment.


Author(s):  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang

The failure probability of the pressurized water reactor pressure vessel for a domestic nuclear power plant in Taiwan has been evaluated according to the technical basis of the USNRC’s new pressurized thermal shock (PTS) screening criteria. The ORNL’s FAVOR code and the PNNL’s flaw models are employed to perform the probabilistic fracture mechanics analysis based on the plant specific parameters of the domestic reactor pressure vessel. Meanwhile, the PTS thermal hydraulic and the probabilistic risk assessment data analyzed from a similar nuclear power plant in the United States for establishing the new PTS rule are applied as the loading condition. Besides, an RT-based regression formula derived by the USNRC is also utilized to verify the through-wall cracking frequencies. It is found that the through-wall cracking of the analyzed reactor pressure vessel only occurs during the PTS events resulted from the stuck-open primary safety relief valves that later reclose, but with only an insignificant failure risk. The results indicate that the Taiwan domestic PWR reactor pressure vessel has sufficient structural margin for the PTS attack until either the end-of-license or for the proposed extended operation.


Sign in / Sign up

Export Citation Format

Share Document