Fatigue Management During LTO of Nuclear Power Plant Borssele

Author(s):  
M. H. C. Hannink ◽  
C. G. M. de Bont ◽  
F. J. Blom ◽  
P. W. B. Quist ◽  
A. E. de Jong ◽  
...  

Fatigue is an important ageing effect to manage for long term operation (LTO) of nuclear power plants (NPPs). One of the steps in the process of LTO assessment is the revalidation of TLAAs (time limited ageing analyses). The safety margins of NPP Borssele with respect to fatigue were demonstrated by projecting the fatigue analyses to the end of the intended period of LTO. Besides this, it has to be ensured that the analyses remain valid during the entire period of LTO. Periodic verification of the load assumptions that are made in the analyses is therefore an important aspect of adequate fatigue management. In this paper, an integrated fatigue management approach is presented, coupling load monitoring, transient counting and fatigue assessment. The approach for periodic verification of the load assumptions in the fatigue analyses consists of two parts. First, it is verified whether the occurred numbers of cycles of the different load cases remain smaller than the numbers of cycles assumed in the fatigue analyses. Secondly, it is verified whether the thermal transients defined for the load cases in the fatigue analyses conservatively represent the occurred thermal transients. For the verification, the application LEAF (Load Evaluation Application for Fatigue) was developed. At NPP Borssele, thermal transients occurring during different load cases (e.g. start-up, shutdown, reactor trip) are registered by a temperature monitoring system. The load evaluation application processes the measurement data and verifies the conservatism of the load conditions in the fatigue analysis of the fatigue relevant components in the system. This paper explains the steps that are followed for the load evaluation and gives a demonstration of the results. The presented procedure is an essential part of adequate fatigue management during LTO.

Author(s):  
M. H. C. Hannink ◽  
F. J. Blom ◽  
P. W. B. Quist ◽  
A. E. de Jong ◽  
W. Besuijen

Long Term Operation (LTO) of nuclear power plants (NPPs) requires an ageing management review and a revalidation of Time Limited Ageing Analyses (TLAAs) of structures and components important for nuclear safety. An important ageing effect to manage is fatigue. Generally, the basis for this is formed by the fatigue analyses of the safety relevant components. In this paper, the methodology for the revalidation of fatigue TLAAs is demonstrated for LTO of NPP Borssele in the Netherlands. The LTO demonstration starts with a scoping survey to determine the components and locations having relevant fatigue loadings. The scope was defined by assessment against international practice and guidelines and engineering judgment. Next, a methodical review was performed of all existing fatigue TLAAs. This also includes the latest international developments regarding environmental effects. In order to reduce conservatism, a comparison was made between the number of cycles in the analyses and the number of cycles projected to the end of the intended LTO period. The projected number of cycles is based on transient counting. The loading conditions used in the analyses were assessed by means of temperature measurements by the fatigue monitoring system (FAMOS). As a result of the review, further fatigue assessment or assessment of environmental effects was necessary for certain locations. New analyses were performed using state-of-the-art calculation and assessment methods. The methodology is demonstrated by means of an example of the surge line. The model includes the piping, as well as the nozzles on the pressurizer and the main coolant line. The thermal loadings for the fatigue analysis are based on temperature measurements. Fatigue management of the NPP is ensured by means of the fatigue concept where load monitoring, transient counting and fatigue assessment are coupled through an integrated approach during the entire period of LTO.


Author(s):  
Patrick Le Delliou ◽  
Sébastien Saillet ◽  
Georges Bezdikian

Thermal ageing of cast duplex stainless steel primary loops components (elbows, pump casings and branch connections) is a concern for long-term operation of EDF nuclear power plants. The thermal ageing embrittlement results from the micro-structural evolution of the ferrite phase (spinodal decomposition), and can reduce the fracture toughness properties of the steel. In addition, it is necessary to consider manufacturing quality and the possible occurrence of casting defects such as shrinkage cavities. In a context of life extension, it is important to assess the safety margins to crack initiation and crack propagation instability. This paper presents several tests conducted by EDF on aged cast duplex stainless steel NPP components, respectively on two-third scale elbows and welded mock-ups. The main characteristics of the tests are recalled, the results are presented, and finally, the lessons drawn are summarized. These tests and their detailed analyses contribute to validate and justify the methodology used by EDF in the integrity assessment of in-service cast duplex stainless steel components.


Author(s):  
Patrick Le Delliou ◽  
Sébastien Saillet ◽  
Georges Bezdikian

Thermal ageing of cast duplex stainless steel primary loops components (elbows, pump casings and branch connections) is a concern for long-term operation of EDF nuclear power plants. The thermal ageing embrittlement results from the microstructural evolution of the ferrite phase (spinodal decomposition), and can reduce the fracture toughness properties of the steel. In addition, it is necessary to consider manufacturing quality and the possible occurrence of casting defects such as shrinkage cavities. In a context of life extension, it is important to assess the safety margins to crack initiation and crack propagation instability. This paper presents two tests conducted by EDF on aged cast duplex stainless steel NPP components, respectively on a full-scale elbow and a branch connection. The main characteristics of the tests are recalled, the results are presented, and finally, the lessons drawn are summarized. These tests and their detailed analyses contribute to validate and justify the methodology used by EDF in the integrity assessment of in-service cast duplex stainless steel components.


Author(s):  
Sang-Nyung Kim ◽  
Sang-Gyu Lim

The safety injection (SI) nozzle of a 1000MWe-class Korean standard nuclear power plant (KSNP) is fitted with thermal sleeves (T/S) to alleviate thermal fatigue. Thermal sleeves in KSNP #3 & #4 in Yeonggwang (YG) & Ulchin (UC) are manufactured out of In-600 and fitted solidly without any problem, whereas KSNP #5 & #6 in the same nuclear power plants, also fitted with thermal sleeves made of In-690 for increased corrosion resistance, experienced a loosening of thermal sleeves in all reactors except KSNP YG #5-1A, resulting in significant loss of generation availability. An investigation into the cause of the loosening of the thermal sleeves only found out that the thermal sleeves were subject to severe vibration and rotation, failing to uncover the root cause and mechanism of the loosening. In an effort to identify the root cause of T/S loosening, three suspected causes were analyzed: (1) the impact force of flow on the T/S when the safety SI nozzle was in operation, (2) the differences between In-600 and In-690 in terms of physical and chemical properties (notably the thermal expansion coefficient), and (3) the positioning error after explosive expansion of the T/S as well as the asymmetric expansion of T/S. It was confirmed that none of the three suspected causes could be considered as the root cause. However, after reviewing design changes applied to the Palo Verde nuclear plant predating KSNP YG #3 & #4 to KSNP #5 & #6, it was realized that the second design modification (in terms of groove depth & material) had required an additional explosive energy by 150% in aggregate, but the amount of gunpowder and the explosive expansion method were the same as before, resulting in insufficient explosive force that led to poor thermal sleeve expansion. T/S measurement data and rubbing copies also support this conclusion. In addition, it is our judgment that the acceptance criteria applicable to T/S fitting was not strict enough, failing to single out thermal sleeves that were not expanded sufficiently. Furthermore, the T/S loosening was also attributable to lenient quality control before and after fitting the T/S that resulted in significant uncertainty. Lastly, in a flow-induced vibration test planned to account for the flow mechanism that had a direct impact upon the loosening of the thermal sleeves that were not fitted completely, it was discovered that the T/S loosening was attributable to RCS main flow. In addition, it was proven theoretically that the rotation of the T/S was induced by vibration.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Mauro Cappelli ◽  
Francesco Cordella ◽  
Francesco Bertoncini ◽  
Marco Raugi

Guided wave (GW) testing is regularly used for finding defect locations through long-range screening using low-frequency waves (from 5 to 250 kHz). By using magnetostrictive sensors, some issues, which usually limit the application to nuclear power plants (NPPs), can be fixed. The authors have already shown the basic theoretical background and simulation results concerning a real steel pipe, used for steam discharge, with a complex structure. On the basis of such theoretical framework, a new campaign has been designed and developed on the same pipe, and the obtained experimental results are now here presented as a useful benchmark for the application of GWs as nondestructive techniques. Experimental measures using a symmetrical probe and a local probe in different configurations (pulse-echo and pitch-catch) indicate that GW testing with magnetostrictive sensors can be reliably applied to long-term monitoring of NPPs components.


2020 ◽  
Vol 6 ◽  
pp. 43
Author(s):  
Andreas Schumm ◽  
Madalina Rabung ◽  
Gregory Marque ◽  
Jary Hamalainen

We present a cross-cutting review of three on-going Horizon 2020 projects (ADVISE, NOMAD, TEAM CABLES) and one already finished FP7 project (HARMONICS), which address the reliability of safety-relevant components and systems in nuclear power plants, with a scope ranging from the pressure vessel and primary loop to safety-critical software systems and electrical cables. The paper discusses scientific challenges faced in the beginning and achievements made throughout the projects, including the industrial impact and lessons learned. Two particular aspects highlighted concern the way the projects sought contact with end users, and the balance between industrial and academic partners. The paper concludes with an outlook on follow-up issues related to the long term operation of nuclear power plants.


Author(s):  
Oliver Martin ◽  
Antonio Ballesteros ◽  
Christiane Bruynooghe ◽  
Michel Bie`th

The energy supply of the future in the EU will be a mix of renewable, fossil and nuclear. There are 145 nuclear power reactors in operation in 15 out of the 27 EU countries, with installed power ∼132 GWe. The age distribution of current nuclear power plants in EU is such that in 2010 most of them will have passed 20-years and approximately 25% of them 30 years of age. The decrease of energy supply from nuclear generated electricity can not always be compensated in a reliable and economical way within a short time span. For this situation utilities may be keen to upgrade the reactor output and /or to ask their regulatory bodies for longer term operation. Under the research financed in the Euratom part of the Research Directorate (RTD) of the European Commission several projects explicitly address the safe long term operation of nuclear power plants (NULIFE, LONGLIFE) and the topics proposed in the 2010 call explicitly address issues concerning component ageing, in particular non metallic components, i.e. instrumentation and cables (I&C) and concrete ageing. This paper presents an overview of the plans for long term operation (LTO) of nuclear power plants in the EU. Special emphasis is given on research activities on component ageing management and long term operation issues related to safety.


Author(s):  
Otso Cronvall

This study concerns the long-term operation (LTO) of a boiling water reactor (BWR) reactor pressure vessel (RPV) and its internals. The main parts of this study are: survey on susceptibility to degradation mechanisms, and computational time limited ageing analyses (TLAAs). The ageing of nuclear power plants (NPPs) emphasises the need to anticipate the possible degradation mechanisms. The BWR survey on susceptibility to these uses the OL1/OL2 RPVs and significant internals as a pilot project. It is not necessary to carry out the TLAAs for all components. Some components were excluded from the TLAAs with a screening process. To do this, it was necessary to determine the component specific load induced stresses, strains and temperature distributions as well as cumulative usage factor (CUF) values. For the screened-in components, the TLAAs covered all significant time dependent degradation mechanisms. These include (but are not limited to): • irradiation embrittlement, • fatigue, • stress corrosion cracking (SCC), and • irradiation accelerated SCC (IASCC). For the components that were screened-in, the potential to brittle, ductile or other degradation was determined. Only some of the most significant cases and results are presented. According to the analysis results, the operational lifetime of the OL1/OL2 RPVs and internals can safely be extended from 40 to 60 years.


Sign in / Sign up

Export Citation Format

Share Document