Parametric Study on Pressure-Temperature Limit Curve

Author(s):  
Shin-Beom Choi ◽  
Han-Bum Surh ◽  
Jong-Wook Kim

The final goal of this study is to solve the round-robin problem for the safety of a reactor pressure vessel by adopting a finite element analysis and probabilistic fracture mechanics. To do so, a sensitivity analysis and a deterministic analysis should be conducted. This paper contains the results of the sensitivity analysis as intermediate results of a round-robin problem. Key parameters such as the initial Reference Temperature for Nil Ductility Transition, Ni contents, Cu contents, fluence, and input transient were chosen to conduct the sensitivity analysis. In addition, different values of crack depth to the thickness ratio are considered to develop FE models. Moreover, a series of FE analyses are carried out. As a result, each key parameter has an influence on RTNDT and KIc. This means that the P-T limit curve is shifted. If the value of each key parameter is increased, the P-T limit curve is moved to the right side. Therefore, the operating area of the P-T limit curve should be reduced. The results of this paper will be very helpful in enhancing our understanding of the P-T limit curve. In addition, it will be used to adjust the probabilistic fracture mechanics and solve the round-robin problem.

Author(s):  
B. N. Rao ◽  
R. M. Reddy

Probabilistic fracture mechanics (PFM) that blends the theory of fracture mechanics and the probability theory provides a more rational means to describe the actual behavior and reliability of structures. However in PFM, the fracture parameters and their derivatives are often required to predict the probability of fracture initiation and/or instability in cracked structures. The calculation of the derivatives of fracture parameters with respect to load and material parameters, which constitutes size-sensitivity analysis, is not unduly difficult. However, the evaluation of response derivatives with respect to crack size is a challenging task, since it requires shape sensitivity analysis. Using a brute-force type finite-difference method to calculate the shape sensitivities is often computationally expensive, in that numerous repetitions of deterministic finite element analysis may be required for a complete reliability analysis. Therefore, an essential need of probabilistic fracture-mechanics is to evaluate the sensitivity of fracture parameters accurately and efficiently.


Author(s):  
Kai Kadau ◽  
Phillip W. Gravett ◽  
Christian Amann

We developed and successfully applied a direct simulation Monte-Carlo scheme to quantify the risk of fracture for heavy duty rotors commonly used in the energy sector. The developed Probabilistic Fracture Mechanics high-performance computing methodology and code ProbFM routinely assesses relevant modes of operation for a component by performing billions of individual fracture mechanics simulations. The methodology can be used for new design and life-optimization of components, as well as for the risk of failure quantification of in service rotors and their re-qualifications in conjunction with non-destructive examination techniques, such as ultrasonic testing. The developed probabilistic scheme integrates material data, ultra-sonic testing information, duty-cycle data, and finite element analysis in order to determine the risk of failure. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy duty rotating equipment.


2010 ◽  
Vol 47 (12) ◽  
pp. 1131-1139 ◽  
Author(s):  
Myung Jo JHUNG ◽  
Seok Hun KIM ◽  
Young Hwan CHOI ◽  
Yoon Suk CHANG ◽  
Xiangyuan XU ◽  
...  

Author(s):  
H. R. Millwater ◽  
Y.-T. Wu ◽  
J. W. Cardinal ◽  
G. G. Chell

This paper describes the application of an advanced probabilistic fracture mechanics computational algorithm with inspection simulation to the probabilistic life assessment of a turbine blade attachment, sometimes referred to as a steeple or fir tree. The life of the steeple is limited by high cycle fatigue. The methodology utilized combines structural finite element analysis, stochastic fatigue crack growth, and crack inspection and repair. The resulting information provides the engineer with an assessment of the probability of failure of the structure as a function of operating time and the effect of the inspection procedure. This information can form the basis of inspection planning and retirement-for-cause decisions.


Author(s):  
Noriyoshi Maeda ◽  
Tetsuo Shoji

Failure Probability of a weld by stress corrosion cracking (SCC) in austenitic stainless steel piping was analyzed by probabilistic fracture mechanics (PFM) approach based on electro-chemical crack growth model (FRI model). In this model, crack growth rate da/dt where a is crack depth is anticipated as the rate of chemical corrosion process defined by electro-chemical Coulomb’s law. The process is also related to the strain rate at the crack tip, taking small scale yielding condition into consideration. Derived transcendental equation is solved numerically by iterative method. Compared to the mechanical crack growth equation like Paris’ law for SCC, FRI model can introduce many electro-chemical parameters such as electric current associated with corrosion of newly born SCC crack surface, the frequency of protective film break and mechanical parameters such as stress intensity factor change with time dK/dt. Stratified Monte-Carlo method was introduced which define the cell of sampling space by the ranges of a/c (c is crack length at surface) and the width of K of sampling space, Kw which has to be defined referring to KSCC below which no SCC is caused. Log-normal distributions were anticipated for a/c distribution and K distribution. Parameter survey performed shows that failure probability which is defined as the ratio of crack number whose depth reached 80% of wall thickness to the total crack number depends on many parameters introduced, especially on yielding stress, electric current decay parameter m, strain hardening index n in Ramberg-Osgood equation and dK/dt. From the requirements of FRI model, two types of threshold value of initial crack depth, cracks having smaller depth than this value can not grow, are proposed. Calculated failure probability does not reach 1 when cracks having smaller initial depth than the threshold value are included in the distribution of analyzing cracks.


1995 ◽  
Vol 117 (1) ◽  
pp. 7-13 ◽  
Author(s):  
G. Yagawa ◽  
S. Yoshimura ◽  
N. Handa ◽  
T. Uno ◽  
K. Watashi ◽  
...  

This paper is concerned with round-robin analyses of probabilistic fracture mechanics (PFM) problems of aged RPV material. Analyzed here is a plate with a semi-elliptical surface crack subjected to various cyclic tensile and bending stresses. A depth and an aspect ratio of the surface crack are assumed to be probabilistic variables. Failure probabilities are calculated using the Monte Carlo methods with the importance sampling or the stratified sampling techniques. Material properties are chosen from the Marshall report, the ASME Code Section XI, and the experiments on a Japanese RPV material carried out by the Life Evaluation (LE) subcommittee of the Japan Welding Engineering Society (JWES), while loads are determined referring to design loading conditions of pressurized water reactors (PWR). Seven organizations participate in this study. At first, the procedures for obtaining reliable PFM solutions with low failure probabilities are examined by solving a unique problem with seven computer programs. The seven solutions agree very well with one another, i.e., by a factor of 2 to 5 in failure probabilities. Next, sensitivity analyses are performed by varying fracture toughness values, loading conditions, and pre and in-service inspections. Finally, life extension simulations based on the PFM analyses are performed. It is clearly demonstrated from these analyses that failure probabilities are so sensitive to the change of fracture toughness values that the degree of neutron irradiation significantly influences the judgment of plant life extension.


Author(s):  
Tai Asayama ◽  
Hideki Takasho ◽  
Takehiko Kato

The application of risk-based technologies not only to inservice inspections but also to the design of components and systems, encompassing a plant life-cycle, is the way to be pursued for the improvement of design of new reactors such as fast breeder reactors. When doing so it is necessary to develop an analytical method that is capable of estimating failure probabilities without a failure database that can only be established on the long-time accumulation of operational experiences. The prediction method should estimate failure probabilities based on actual mechanisms that cause failure. For this purpose, this study developed a probabilistic structural reliability evaluation method for fatigue which is a representative failure mode to be prevented in components of nuclear plants. This method is an extension of probabilistic fracture mechanics approach but is capable of modeling crack initiation, crack propagation, as well as crack depth density distribution at a given cycle. To verify the methodology, crack depth distribution observed in thermal fatigue test specimens were evaluated, and it was shown that the method could reproduce the observed crack depth distributions fairly well. This is considered to explore the possibility that probabilistic fracture mechanics approach can be verified by experiments, which was deemed impossible so far. Further improvement such as explicit implementation of interaction mechanisms between adjacent cracks will allow this methodology to be applied to the procedure of optimization of inservice inspection planning, as well as to the optimization of safety factors in component design of nuclear plants.


Author(s):  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang ◽  
Kuan-Rong Huang ◽  
Ru-Feng Liu

After the Code Case N-640 was issued in 1999, the fracture toughness curve of reactor pressure vessel materials in ASME Section XI-Appendix G was amended to the KIC curve. In Taiwan, the present pressure-temperature limit curves of normal reactor startup (heat-up) and shut-down (cool-down) for the reactor pressure vessel is still calculated per KIA curve in 1998 or earlier editions. In this paper, the failure risks of a Taiwan domestic reactor pressure vessel under various pressure-temperature limit operations are analyzed. First, the pressure-temperature limit curves of the Taiwan domestic reactor pressure vessel based on KIA and KIC curves, and various levels of embrittlement, are calculated. Then, the ORNL’s probabilistic fracture mechanics code, FAVOR, and the PNNL’s flaw model are utilized to assess the failure probabilities of the reactor pressure vessel under such pressure-temperature limit transients. Further, the deterministic analyses of FAVOR code are also conducted. It is found that under the pressure-temperature limit transients based on KIC curves, the reactor pressure vessel presents higher failure probabilities, but are all below the allowable risk. The present results indicate that using the KIC curve the pressure-temperature limits can either increase the operational margin or still maintains the sufficient stability of the analyzed reactor pressure vessel.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Kai Kadau ◽  
Phillip W. Gravett ◽  
Christian Amann

We developed and successfully applied a direct simulation Monte Carlo (MC) scheme to quantify the risk of fracture for heavy-duty rotors commonly used in the energy sector. The developed probabilistic fracture mechanics (FM), high-performance computing methodology, and code ProbFM routinely assess relevant modes of operation for a component by performing billions of individual FM simulations. The methodology can be used for new design and life optimization of components, as well as for the risk of failure RoF quantification of in service rotors and their requalifications in conjunction with nondestructive examination techniques, such as ultrasonic testing (UT). The developed probabilistic scheme integrates material data, UT information, duty-cycle data, and finite element analysis (FEA) in order to determine the RoF. The methodology provides an integrative and robust measure of the fitness for service and allows for a save and reliable operation management of heavy-duty rotating equipment.


Sign in / Sign up

Export Citation Format

Share Document