A Numerical Study on Fracture Toughness of CANDU Pressure Tube

Author(s):  
Elisabeth Keim ◽  
Tomas Nicak ◽  
Bogdan Wasiluk

CANDU pressure tubes carry nuclear fuel and belong to the primary heat transport system. They are fabricated from cold-worked Zr-2.5Nb alloy prone to deuterium ingress under normal operating conditions. Increased hydrogen equivalent concentration and reactor pressure-temperature transients result in development of a brittle phase, hydride, changing mechanical behavior. The hydride downgrades fracture toughness properties in the transition region and reduces material ductility. Canadian Nuclear Safety Commission founded a two-phase project to improve understanding of the parameters governing fracture toughness properties and load carrying capacity of Zr-2.5Nb pressure tubes with elevated hydrogen equivalent concentrations. This paper presents preliminary results obtained in the first phase. The fracture behavior of a curved compact tension specimen (CCTS) and a pressure tube burst specimen (PT) with axial through-wall crack used in destructive burst test were studied in details. The intention was to identify any differences between fracture behavior of the CCTS and the PT potentially affecting fracture toughness estimates. The stress and deformation states ahead of the crack front, calculated fracture toughness parameters including J-integral and crack tip opening displacement (CTOD), as well as fracture constraint by means of elastic T-stress have been discussed.

Author(s):  
Jun Cui ◽  
Gordon K. Shek

CANDU® reactor uses Zr-2.5Nb alloy pressure tubes as the primary coolant containment. Fracture toughness properties of the pressure tubes are required for evaluation of fracture initiation and leak-before-break. This paper presents an experimental study on the effects of hydride morphology and test temperature on axial fracture toughness of a cold-worked, unirradiated Zr-2.5Nb pressure tube. Compact tension specimens were prepared from one tube section which contained as-received hydrogen concentration and another section which was electrolytically hydrided to 70 ppm hydrogen. Reoriented hydrides were formed in the hydrided tube section in ten thermal cycles under an applied tensile hoop stress of 160 MPa. The hydride morphologies were characterized by a parameter referred to as the hydride continuity coefficient (HCC), which provided a measure of the extent to which the hydrides were reoriented with respect to the applied stress direction. Partially reoriented hydrides with HCC between 0.3–0.4 were formed under the stress and temperature cycles used to precipitate the hydrides. J-R curves were generated to characterize the fracture behavior of the specimens tested at five different temperatures: 25°C (room temperature), 100°C, 150°C, 200°C and 250°C. Test results indicate that, for the as-received specimens, the fracture toughness is relatively high at room temperature and not significantly affected by the test temperature between room temperature and 250°C. For the 70 ppm hydrided specimens containing partially reoriented hydrides, the fracture toughness is significantly lower than that of the as-received specimens at room temperature. At 100°C, the fracture toughness is higher than that at room temperature but the average value is still lower than that of the as-received specimens. The specimens exhibit either brittle or ductile fracture behavior with a sharp transition to an upper-shelf toughness value. At 150°C, the specimens achieve an upper-shelf toughness level. Between 150°C and 250°C, the fracture toughness is similar to that of the as-received specimens and not affected by the reoriented hydrides.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Rafael G. Savioli ◽  
Claudio Ruggieri

This work addresses an experimental investigation on the cleavage fracture behavior of an ASTM A285 Grade C pressure vessel steel. One purpose of this study is to enlarge previously reported work on mechanical and fracture properties for this class of steel to provide a more definite database for use in structural and defect analyses of pressurized components, including pressure vessels and storage tanks. Another purpose is to determine the reference temperature, T0, derived from the Master curve methodology which defines the dependence of fracture toughness with temperature for the tested material. Fracture toughness testing conducted on single edge bend SE(B) specimens in three-point loading extracted from an A285 Grade C pressure vessel steel plate provides the cleavage fracture resistance data in terms of the J-integral and crack tip opening displacement (CTOD) at cleavage instability, Jc and δc. Additional tensile and conventional Charpy tests produce further experimental data which serve to characterize the mechanical behavior of the tested pressure vessel steel. The experimental results reveal a strong effect of specimen geometry on Jc and δc-values associated with large scatter in the measured values of cleavage fracture toughness. Overall, the present investigation, when taken together with previous studies, provides a fairly extensive body of experimental results which describe in detail the fracture behavior of an ASTM A285 Grade C pressure vessel steel.


Author(s):  
Abderrazak Traidia ◽  
Elias Chatzidouros ◽  
Mustapha Jouiad ◽  
Kaamil-Ur-Rahman Shibly

Abstract Standard-compliant measurement of the in-plane fracture toughness of metals is often challenging due to insufficient material in the through-thickness direction to extract a full single edge bending (SEB) or compact tension (CT) fracture specimen. In the present work, we propose a new specimen design methodology to overcome this challenge. A W-shaped SEB specimen (called W-SEB) was developed, and its topology was optimized using finite element simulations. The new specimen design was validated numerically and experimentally on a case study showing excellent agreement with standard ASTM E1820 actual SEB specimen geometry. In view assessing the anisotropy of the fracture toughness (KQ and crack tip opening displacement (CTOD)) of pipeline steels susceptible to hydrogen-induced cracking (HIC), the W-SEB specimen was tested on X65 and X42 pipeline steel samples taken from the field. Experimental results show an increase in the maximum CTOD along the in-plane direction as compared to the transverse direction for both steel grades. Such experimental results could lead to important considerations with respect to accurate fitness for service assessment of HIC-damaged assets.


Author(s):  
Bruce W. Williams ◽  
William R. Tyson ◽  
C. Hari M. Simha ◽  
Bogdan Wasiluk

Abstract CSA Standard N285.8 requires leak-before-break and fracture protection for Zr-2.5Nb pressure tubes in operating CANDU reactors. In-service deuterium uptake causes the formation of hydrides, which can result in additional variability and reduction of fracture toughness. Pressure tube fracture toughness is assessed mainly through rising pressure tube section burst tests. Given the length of the ex-service pressure tubes required for burst testing and the requirement to increase the hydrogen content of irradiated ex-service pressure tubes, only a limited number of burst tests can be performed. Using small-scale compact tension, C(T), specimens are advantageous for obtaining a statistically significant number of fracture toughness measurements while using less ex-service pressure tube material. This work focuses on the study of C(T) geometry designs in order to obtain crack growth resistance and fracture toughness closer to those deduced from burst tests. Because C(T) specimens must be machined from pressure tubes of about 100 mm in diameter and 4 mm in wall thickness, they are out-of-plane curved. As well, they undergo significant tunnelling during crack extension. These two factors can result in a violation of the ASTM standard for fracture toughness testing. The current work examined the influence of specimen curvature and tunnelled crack front on the crack growth resistance curve, or J-R curve. Finite element (FE) models using stationary and growing cracks were used in a detailed numerical investigation. To capture crack tunnelling in the FE models, a damage mechanics approach was adopted, with the critical strain to accumulate damage being a function of crack front stress triaxiality. The J-integral numerically estimated from the domain integral approach was compared to the J-integral calculated from the analytical equations in the ASTM E-1820 standard. In most cases, the difference between the numerical and the standard estimations was less than 10%, which was considered acceptable. It was found that at higher load levels of load-line-displacement, specimen curvature influenced the J-integral results. Crack tunnelling was shown to have a small influence on the estimated J-integrals, in comparison with the straight crack fronts. A modest number of experiments were carried out on unirradiated Zr-2.5Nb pressure tube material using three designs of curved C(T) specimens. It was found that the specimens of both designs that featured a width of 34 mm had more than twice the crack extension of the specimens of the 17-mm width design. The 17-mm width specimens are used mainly to assess the small-scale fracture toughness of pressure tube material. Additionally, the applied J-integral at the maximum load was about 1.4 times higher for the larger-width C(T) specimens. These C(T) specimens also produced J-R curves with greater crack extensions, which were closer to those obtained from the pressure tube section burst tests. Artificially hydrided pressure tube material was not considered in the current work, to avoid any potential source of experimental variability; however, it should be considered in future work.


Author(s):  
Michelle Edwards

This presentation will document and discuss the development of a compact tension test for the grading of asphalt binders at low temperatures. The geometry was chosen because it provides an easy way to obtain the plane ­strain fracture toughness, fracture energy, and crack tip opening displacement in brittle failure on a small sample. It is believed that the method will allow for a better ranking of binders in regard to their low ­temperature fracture resistance. Compact tension specimens were prepared in different sizes with varying notch depths. Fracture toughness was found to be constant, regardless of the notch depth or specimen width for both straight and modified binders. Fracture energy was found to decrease with notch depth, which is thought to be the result of energy ­absorbing mechanisms away from the crack­tip. Deeper notches or an energy correction is able to account for that issue. Reproducibility of the fracture test was found to be good with a standard deviation of five to ten percent for fracture toughness and fifteen to twenty percent for fracture energy, which is typical for such tests. Given the fact that brittle fracture properties can vary by orders of magnitude for binders of the same Superpave grade, it is concluded that the test method has a high ability to reveal statistically significant differences in toughness.


1987 ◽  
Vol 109 (4) ◽  
pp. 314-318 ◽  
Author(s):  
D. F. Watt ◽  
Pamela Nadin ◽  
S. B. Biner

This report details the development of a three-stage fracture toughness testing procedure used to study the effect of tempering temperature on toughness in 01 tool steel. Modified compact tension specimens were used in which the fatigue precracking stage in the ASTM E-399 Procedure was replaced by stable precracking, followed by a slow crack growth. The specimen geometry has been designed to provide a region where slow crack growth can be achieved in brittle materials. Three parameters, load, crack opening displacement, and time have been monitored during the testing procedure and a combination of heat tinting and a compliance equation have been used to identify the position of the crack front. Significant KIC results have been obtained using a modified ASTM fracture toughness equation. An inverse relationship between KIC and hardness has been measured.


Author(s):  
Md Ibrahim Kittur ◽  
Krishnaraja G. Kodancha ◽  
C. R. Rajashekar

In this investigation, the variation of J-integral considering Compact Tension (CT) specimen geometry varying a/W and σ using 2D and 3D elasto-plastic Finite Element (FE) analysis have been studied. Further, the investigation has been done to examine the relationship between the J and δ for varied a/W and σ. The plane stress and plane strain elasto-plastic FE analyses have been conducted on the CT specimen with a/W = 0.45–0.65 to extract the J and Crack-tip Opening Displacement (CTOD) values for mild steel. The comparative study of the variation of dn with a/W of mild steel with earlier results of IF steel is carried out. The study clearly infers the effect of yield stress on the variation of the magnitude of dn with reference to a/W ratio. The present analysis infers that while converting the magnitude of the CTOD to J one needs to carefully evaluate the value of dn depending on the material rather than considering it to be unity. Further, the study was extended to experimental and 3D FEA wherein J-integral and CTOD were estimated using the CT specimen. Experimental results reveal that the crack length, the specimen thickness, and the loading configuration have an effect on the fracture toughness measurements. The error analysis between the results obtained by 3D FEA and experimentation were conducted and found to be within limits.


1976 ◽  
Vol 98 (2) ◽  
pp. 135-142 ◽  
Author(s):  
J. F. Copeland

The effects of sulfur content on the fracture toughness properties of 2 1/4Cr-1 Mo steel were evaluated at test temperatures above, at, and below the nil ductility transition temperature (NDTT) of −23°C (−10°F). Small, 12.7-mm (0.5-in.) thick compact tension specimen results were combined with J-integral, Equivalent Energy, and Crack Opening Displacement analytical techniques to provide KIc results up to 22°C (72°F). It was found that the sulfur content of this steel has a large detrimental effect on KIc at the NDTT and above, where microvoid coalescence is the fracture mode. Sulfur has no significant effect at −73°C (−100°F) where cleavage occurs. These results also indicate that the higher Charpy V-notch energy at NDTT, shown by lower sulfur steels, is translatable into increased fracture resistance.


2013 ◽  
Vol 634-638 ◽  
pp. 2808-2812
Author(s):  
Zhu Feng Sun ◽  
Ling Yun Xie

Explored the influence of pore structure of foam metal material on mechanical behavior of fracture. Discuss fracture toughness of several different micro geometric structure of foam metal material with finite element method. The author's calculations showed, microstructure and loading mode has an important effect on the fracture toughness of the foam metal material. due to ignoring the effects of cell structure on the mechanical properties of materials, the classic fracture toughness criterion -crack tip opening displacement (COD) is incomplete, it would be more efficient to take opening displacement change rate of the crack-tip as the parameter to characteristic the metallic foam material fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document