Detection of Ratcheting in Finite Element Calculations

Author(s):  
M. C. Messner ◽  
T.-L. Sham

The distinction between a ratcheting and non-ratcheting response is critical for many high temperature design methods. Non-ratcheting is generally considered safe — deformation remain bounded over the lifetime of the component — while ratcheting is undesirable. As a particular example, the elastic perfectly-plastic (EPP) design methods described in recent ASME Section III, Division 5 code cases require a designer to distinguish ratcheting from non-ratcheting for finite element analyses using a relatively simple, elastic perfectly-plastic constitutive response. However, it can be quite difficult to distinguish these two deformation regimes using finite element (FE) analysis particularly in the case where the actual ratcheting strain is small. In practice FE analysis of structures that are analytically in either the plastic shakedown or ratcheting regimes will result in small, cycle-to-cycle accumulated strains characteristic of ratcheting. Distinguishing false ratcheting — the structure is actually in the plastic shakedown regime — from true ratcheting can be challenging. We describe the characteristics of nonlinear FE analysis that cause these false ratcheting strains and describe practical methods for distinguishing a ratcheting from a non-ratcheting response.

1993 ◽  
Vol 60 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Castrenze Polizzotto

For a structure of elastic perfectly plastic material subjected to a given cyclic (mechanical and/or kinematical) load and to a steady (mechanical) load, the conditions are established in which plastic shakedown cannot occur whatever the steady load, and thus the structure is safe against the alternating plasticity collapse. Static and kinematic theorems, analogous to those of classical shakedown theory, are presented.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


1985 ◽  
Vol 107 (1) ◽  
pp. 13-18 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

Capabilities for the analysis of combined viscous and plastic behavior have been added to an existing finite element computer program for two-dimensional elastic-plastic calculations. This program (PAPSTB) has been formulated for elastic-plastic stress and deformation analyses of two-dimensional and axisymmetric structures. It has the ability to model large strains and large deformations of elastic-perfectly plastic, multi-linear hardening, or power-hardening materials. The program is based on incremental plasticity theory with a von Mises yield criterion. Time dependent behavior has been introduced into the PAPSTB program by adding a viscous strain increment to the elastic and plastic strain increment to form the total strain increment. The viscous calculations presently employ a power-law relationship between the viscous strain rate and the effective stress. The finite element code can be easily modified to handle more complex viscous models. The Newmark method for time integration is used, i.e., an input parameter is included which enables the user to vary the time domain approximation between forward (explicit) and backward (implicit) difference. Automatic time stepping is used to provide for stability in the viscous calculations. It is controlled by an input parameter related to the ratio of the current viscous strain increment to the total strain. The viscoplastic capabilities of the PAPSTB program are verified using the axisymmetric problem of an internally pressurized, thick-walled cylinder. The transient viscoplastic case is analyzed to demonstrate that the elastic-perfectly plastic solution is obtained as a steady-state condition is approached. The influence of varying the time integration parameter for transient viscoplastic calculations is demonstrated. In addition, the effects of time step on solution accuracy are investigated by means of the automatic time stepping algorithm in the program. The approach is then applied to a simple forging problem of cylinder upsetting.


1985 ◽  
Vol 52 (1) ◽  
pp. 75-82 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper presents finite element analyses of two-dimensional (plane strain), elastic-plastic, repeated, frictionless rolling contact. The analysis employs the elastic-perfectly plastic, cycle and strain-amplitude-independent material used in the Merwin and Johnson analysis but avoids several assumptions made by these workers. Repeated rolling contacts are simulated by multiple translations of a semielliptical Hertzian pressure distribution. Results at p0/k = 3.5, 4.35, and 5.0 are compared to the Merwin and Johnson prediction. Shakedown is observed at p0/k = 3.5, but the comparisons reveal significant differences in the amount and distribution of residual shear strain and forward flow at p0/k = 4.35 and p0/k = 5.0. The peak incremental, shear strain per cycle for steady state is five times the value calculated by Merwin and Johnson, and the plastic strain cycle is highly nonsymmetric.


Author(s):  
Ralf Peek ◽  
Heedo Yun

Analytical solutions for the lateral buckling of pipelines exist for the case when the pipe material remains in the linearly elastic range. However for truly high temperatures and/or heavier flowlines, plastic deformation cannot be excluded. One then has to resort to finite element analyses, as no analytical solutions are available. This paper does not provide such an analytical solution, but it does show that if the finite element solution has been calculated once, then that solution can be scaled so that it applies for any other values of the design parameters. Thus the finite element solution need only be calculated once and for all. Thereafter, other solutions can be calculated by scaling the finite element solution using simple analytical formulas. However, the shape of the moment-curvature relation must not change. That is, the moment-curvature relation must be a scaled version of the moment-curvature relation for the reference problem, where different scale factors may be applied to the moment and curvature. This paper goes beyond standard dimensional analysis (as justified by the Bucklingham Π theorem), to establish a stronger scalability result, and uses it to develop simple formulas for the lateral buckling of any pipeline made of elastic-plastic material. The paper includes the derivation of the scaling result, the application procedure, the reference solution for an elastic-perfectly plastic pipe, and an example to illustrate how this reference solution can be used to calculate the lateral buckling response for any elastic-perfectly plastic pipe.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. Shankar ◽  
M. M. Mayuram

An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic perfectly plastic material. The present analysis extends the work (sphere in contact with a flat plate) of Kogut–Etsion Model and Jackson–Green Model and addresses some aspects uncovered in the above models. This paper shows the critical values in the dimensionless interference ratios (ω∕ωc) for the evolution of the elastic core and the plastic region within the asperity for different Y∕E ratios. The present analysis also covers higher interference ratios, and the results are applied to show the difference in the calculation of real contact area for the entire surface with other existing models. The statistical model developed to calculate the real contact area and the contact load for the entire surfaces based on the finite element method (FEM) single asperity model with the elastic perfectly plastic assumption depends on the Y∕E ratio of the material.


Author(s):  
J. L. Gordon ◽  
D. P. Jones

The capability to obtain limit load solutions of plates with triangular penetration patterns using fourth order functions to represent the collapse surface has been presented in previous papers. These papers describe how equivalent solid plate elastic-perfectly plastic finite element capabilities are generated and demonstrate how such capabilities can be used to great advantage in the analysis of tubesheets in large heat exchanger applications. However, these papers have pointed out that although the fourth order functions can produce sufficient accuracy for many practical applications, there are situations where improvements in the accuracy of in-plane and transverse shear are desirable. This paper investigates the use of a sixth order function to represent the collapse surface for improved accuracy of the in-plane response. Explicit elastic-perfectly plastic finite element solutions are obtained for unit cells representing an infinite array of circular penetrations arranged in an equilateral triangular array. These cells are used to create a numerical representation of the complete collapse surfaces for a number of ligament efficiencies (h/P where h is the minimum ligament width and P is the distance between hole centers). Each collapse surface is then fit to a sixth order function that satisfies the periodicity of the hole pattern. Sixth-order collapse functions were developed for h/P values between .05 and .50. Accuracy of the sixth order and the fourth order functions are compared. It was found that the sixth order function is indeed more accurate, reducing the error from 12.2% for the fourth order function to less than 3% for the sixth order function.


Sign in / Sign up

Export Citation Format

Share Document