Reactor Vessel Nozzle Inner Radius Fracture Analyses Using Elastic-Plastic Fracture Mechanics

Author(s):  
S. E. Marlette

The American Society of Mechanical Engineers (ASME) published Section XI Code Case N-648-1 [1] in order to provide alternative examinations of reactor vessel nozzle inner radii. The Code Case was created because ultrasonic examination of the inner radius regions of reactor vessels nozzles is not practical within the operating fleet and the likelihood of flaws developing within these locations is extremely low. Justification for using alternative visual examinations was provided in a paper published at the 2001 Pressure Vessel and Piping (PVP) Technology Conference [2]. This 2001 PVP paper used linear elastic fracture mechanics (LEFM) to demonstrate tolerance for flaws significantly larger than would be detected using nondestructive examination techniques. However, the Code Case [1] and PVP paper [2] were only applicable to operating plants in the United States. Thus, there was a need to provide a similar fracture analysis considering the AP1000® design to support elimination of volumetric examinations of the nozzle inner radius regions. It was also important to consider improvements in facture mechanics techniques that have been recently published in the ASME Code. The ductile behavior of the material at operating temperatures allow for the use of elastic plastic fracture mechanics (EPFM) methods which provides significantly improved flaw tolerance results. This paper compares results from analyses using LEFM and the EPFM methods for the AP1000 reactor vessel nozzle inner radii region and demonstrates tolerance for large flaws within these regions in order to support a basis for elimination of volumetric inspection during in-service and pre-service examination for the AP1000 design.

Author(s):  
Douglas A. Scarth ◽  
Gery M. Wilkowski ◽  
Russell C. Cipolla ◽  
Sushil K. Daftuar ◽  
Koichi K. Kashima

Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code provides rules and requirements for maintaining pressure boundary integrity of components, piping, and equipment during the life of a nuclear power plant. Evaluation procedures and acceptance criteria for the evaluation of flaws in nuclear piping in Section XI of the ASME Code were first published in 1983 and have been under revision for the past several years. This paper provides an overview of the procedures and acceptance criteria for pipe flaw evaluation in Section XI. Both planar and nonplanar flaws are addressed by Section XI. The evaluation procedures and acceptance criteria cover: failure by plastic collapse as characterized by limit load analysis; fracture due to ductile tearing prior to attainment of limit load, as characterized by elastic-plastic fracture mechanics (EPFM) analysis; and brittle fracture as characterized by linear elastic fracture mechanics (LEFM) analysis. A major revision to the evaluation procedures and acceptance criteria was published in the 2002 Addenda to Section XI. Evaluation procedures and acceptance criteria in the 2001 Edition, as well as the revisions in the 2002 Addenda, are described in this paper. Code Cases that address evaluation of wall thinning in piping systems, as well as temporary acceptance of flaws in moderate energy piping systems, are also described.


Author(s):  
Phuong H. Hoang ◽  
Gery M. Wilkowski

Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code provides rules and requirements for maintaining pressure boundary integrity of piping during the life of a nuclear power plant. Evaluation procedures and acceptance criteria for the evaluation of flaws in nuclear piping in Section XI of the ASME Code were first published in 1983 and have been under revision for the past several years. The evaluation procedures and acceptance criteria cover: failure by plastic collapse as characterized by limit load analysis; fracture due to ductile tearing prior to attainment of limit load, as characterized by elastic-plastic fracture mechanics (EPFM) analysis; and brittle fracture as characterized by linear elastic fracture mechanics (LEFM) analysis. A major revision to the evaluation procedures and acceptance criteria was published in the 2002 Addenda to Section XI. A brief overview of the pipe flaw evaluation procedures published in the 2002 Addenda are provided in the paper. The evaluation procedures that were published in the 2002 Addenda have been validated against the results of a large number of pipe fracture experiments. The results of this validation exercise are summarized in this paper.


2021 ◽  
pp. 1-10
Author(s):  
Waseem Ur Rahman ◽  
Rafiullah khan ◽  
Noor Rahman ◽  
Ziyad Awadh Alrowaili ◽  
Baseerat Bibi ◽  
...  

BACKGROUND: Understanding the fracture mechanics of bone is very important in both the medical and bioengineering field. Bone is a hierarchical natural composite material of nanoscale collagen fibers and inorganic material. OBJECTIVE: This study investigates and presents the fracture toughness of bovine cortical bone by using elastic plastic fracture mechanics. METHODS: The J-integral was used as a parameter to calculate the energies utilized in both elastic deformation (Jel) and plastic deformation (Jpl) of the hipbone fracture. Twenty four different types of specimens, i.e. longitudinal compact tension (CT) specimens, transverse CT specimens, and also rectangular unnotched specimens for tension in longitudinal and transverse orientation, were cut from the bovine hip bone of the middle diaphysis. All CT specimens were prepared according to the American Society for Testing and Materials (ASTM) E1820 standard and were tested at room temperature. RESULTS: The results showed that the average total J-integral in transverse CT fracture specimens is 26% greater than that of longitudinal CT fracture specimens. For longitudinal-fractured and transverse-fractured cortical specimens, the energy used in the elastic deformation was found to be 2.8–3 times less than the energy used in the plastic deformation. CONCLUSION: The findings indicate that the overall fracture toughness measured using the J-integral is significantly higher than the toughness calculated by the stress intensity factor. Therefore, J-integral should be employ to compute the fracture toughness of cortical bone.


Author(s):  
Phillip E. Wiseman ◽  
Zara Z. Hoch

Axial compression allowable stress for pipe supports and restraints based on linear elastic analysis is detailed in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF. The axial compression design by analysis equations within NF-3300 are replicated from the American Institute of Steel Construction (AISC) using the Allowable Stress Design (ASD) Method which were first published in the ASME Code in 1973. Although the ASME Boiler and Pressure Vessel Code is an international code, these equations are not familiar to many users outside the American Industry. For those unfamiliar with the allowable stress equations, the equations do not simply address the elastic buckling of a support or restraint which may occur when the slenderness ratio of the pipe support or restraint is relatively large, however, the allowable stress equations address each aspect of stability which encompasses the phenomena of elastic buckling and yielding of a pipe support or restraint. As a result, discussion of the axial compression allowable stresses provides much insight of how the equations have evolved over the last forty years and how they could be refined.


Author(s):  
Amy J. Smith ◽  
Keshab K. Dwivedy

ASME Code Section XI Nonmandatory Appendix C [1] formalized evaluation of flaws in piping for justification of continued service of piping components with an identified crack-like flaw. The revision of this appendix in 2004 was a significant improvement in the evaluation methodology for both flawed austenitic stainless steel and ferritic steel pipe depending upon the failure mode governed by limit load (fully plastic), elastic-plastic fracture mechanics, or linear elastic fracture mechanics. The appendix also provides a screening procedure to determine failure mechanism and a procedure for flaw modeling based on the estimated flaw size at the end of a specified evaluation period. The purpose of this paper is to propose an improvement to the limit load method applicable to screened-in carbon steel, wrought stainless steel base material, stainless steel weld material with nonflux weld, and cast products in which the ferrite content is less than twenty percent. In addition, changes in the formulation are proposed to extend the methodology to non-crack-like flaws. Both crack-like and non-crack-like circumferential flaws in the piping are analyzed to simplify formulation for flaw evaluation. The paper concludes that the proposed formulation improves efficiency of the application of Appendix C methodology for crack-like flaw and non-crack-like flaw evaluations.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Kiminobu Hojo ◽  
Yukio Takahashi

There are several codes, standards, handbooks, and guidelines for the nuclear power plant maintenance in Japan, the US, and EU. They include Stress Corrosion Cracking (SCC) and fatigue crack growth curves for crack growth calculation. In this paper, the authors selected five kinds of codes, standards and guidelines, and compared their fatigue crack growth curves for choice of the suitable curves. The feature of each curve was quantitatively evaluated. Japan Society of Mechanical Engineers (JSME) maintenance rule and American Society of Mechanical Engineers (ASME) code provide the fatigue crack growth formulae for both ferritic and austenitic steels and consider the environmental effects in some cases. The Fitness-for-Service Network (FITNET) curves are categorized in many kinds of metal, whereas the Forschungskuratorium Maschinenbau (Germany) = Board of Trustees of Mechanical Engineering (FKM) guideline and Welding Engineering Society (WES) procedure provide the common properties generally applicable to steels.


Sign in / Sign up

Export Citation Format

Share Document