Improving Flange Designs Based on ASME Section VIII Div. 1, Appendix 2

Author(s):  
Chris W. Cary

Abstract Although improved methods for flange design have been under development for many years, ASME Boiler and Pressure Vessel Code Section VIII, Division 1 Appendix 2 continues to be the basis for the design of most custom pressure vessel flanges. While the method does a reasonably good job of calculating flange stress and rotation from the design loadings, it does not closely constrain some of the design input variables, such as gasket width and geometry, allowing the designer to produce poorly-performing designs. Also, the gasket loading factors (m & y values) have long been recognized as needing improvement. These weaknesses occasionally result in flanges which are difficult to seal, even with very high assembly bolt stress. In response to these weaknesses in the Appendix 2 method, various attempts to improve the method may be employed, and are sometimes required by end-user specifications. This paper provides an assessment of the effectiveness of various improvement techniques by examining the actual effects on flange designs across a range of diameter and design pressure, and makes recommendations for the use of such techniques. The analysis methods in PCC-1 and WRC Bulletin 538 are used as the basis of the evaluation, with a focus on gasket stress as fundamental to sealing.

Author(s):  
Allen Selz ◽  
Daniel R. Sharp

Developed at the request of the US Department of Transportation, Section XII-Transport Tanks, of the ASME Boiler and Pressure Vessel Code addresses rules for the construction and continued service of pressure vessels for the transportation of dangerous goods by road, air, rail, or water. The standard is intended to replace most of the vessel design rules and be referenced in the federal hazardous material regulations, Title 49 of the Code of Federal Regulations (CFR). While the majority of the current rules focus on over-the-road transport, there are rules for portable tanks which can be used in marine applications for the transport of liquefied gases, and for ton tanks used for rail and barge shipping of chlorine and other compressed gases. Rules for non-cryogenic portable tanks are currently provided in Section VIII, Division 2, but will be moved into Section XII. These portable tank requirements should also replace the existing references to the outmoded 1989 edition of ASME Section VIII, Division 1 cited in Title 46 of the CFR. Paper published with permission.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.


Author(s):  
J Y Zheng ◽  
P Xu ◽  
L Q Wang ◽  
G H Zhu

Flat steel ribbon wound pressure vessels have been adopted by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 and Division 2. An excellent safety and service record has been built up in the past 34 years. Based on the interfacial friction model proposed by Zheng [1], a more accurate method for predicting the stresses in a flat steel ribbon wound pressure vessel is offered in this paper, taking account of the axial displacement, the change in the helical winding angle, the interfacial friction between ribbon layers and the effect of lamination. Comparison between experimental results of five test vessels with an inside diameter varying from 350 to 1000 mm, four different helical winding angles (18, 24, 27 and 30°), two width—thickness ratios of the ribbon (20 and 22.86) and results of calculation using the stress formulae available demonstrates that the method in this paper is more accurate and that interfacial friction gives a marked strengthening contribution to the axial strength of the vessel.


Author(s):  
S. M. McGuffie ◽  
M. A. Porter

ASME BPVC Section VIII Division 1 Paragraph UG-22 (f) requires consideration of the loadings from seismic conditions. For a vessel containing a fluid, the loading due to sloshing must be considered. ASCE Standard 7-02 (Section 9.14.7.3) states that a damping value of 0.5% can be used to account for the fluid sloshing. This can lead to an overly conservative design by over-estimating the loads on the tank structure. A time-history analysis was performed on a horizontally mounted pressure vessel experiencing 3-axis time history loads in order to determine if this method is more accurate in determining the loads. The analysis employed a 3-dimensional computational fluid dynamics (CFD) model, using transient time-history techniques. The reactions at the mounting locations were compared to the reactions computed using closed form solutions, demonstrating good correlation. The results show that CFD is an excellent tool for investigating seismic sloshing loads in vessels.


Author(s):  
Jinhua Shi ◽  
Liwu Wei ◽  
Claude Faidy ◽  
Andrew Wasylyk ◽  
Nawal Prinja

Different pressure vessel and piping design codes and standards have adopted different fatigue analysis methods. In order to make some contribution to current efforts to harmonize international design codes and standards, a review of fatigue analysis methods for a number of selected nuclear and non-nuclear design codes and standards has been carried out. The selected design codes and standards are ASME Boiler and Pressure Vessel Code Section III Subsection NB and Section VIII Division 2, EN 12952, EN 13445, EN 13480, PD 5500, RCC-M, RCC-MRx, JSME, PNAEG and R5. This paper presents the initial review results. The results of the study could be used as part of the on-going work of the Codes and Standards Task Force of the World Nuclear Association (WNA) Cooperation in Reactor Design Evaluation and Licensing (CORDEL) Working Group.


Author(s):  
Richard J. Basile ◽  
Clay D. Rodery

Appendix M of Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code[1] provides rules for the use of isolation (stop) valves between ASME Section VIII Division 1 pressure vessels and their protective pressure relieving device(s). These current rules limit stop valve applications to those that isolate the pressure relief valve for inspection and repair purposes only [M-5(a), M-6], and those systems in which the pressure originates exclusively from an outside source [M-5(b)]. The successful experience of the refining and petrochemical industries in the application and management of full area stop valves between pressure vessels and pressure relief devices suggested that the time was appropriate to review and consider updates to the current Code rules. Such updates would expand the scope of stop valve usage, along with appropriate safeguards to ensure that all pressure vessels are provided with overpressure protection while in operation. This white paper provides a summary of the current Code rules, describes the current practices of the refining and petrochemical industries, and provides an explanation and the technical bases for the Code revisions.


Author(s):  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Abstract Most of the heavy thickness boiler and pressure vessel components require heat treatment — in the form of post weld heat treatment (PWHT) and sometimes coupled with local PWHT. It is also a common practice to apply post heating/ intermediate stress relieving/ dehydrogenation heat treatment in case of alloy steels. The heat treatment applied during the various manufacturing stages of boiler and pressure vessel have varying effects on the type of material that is used in fabrication. It is essential to understand the effect of time and temperature on the properties (like tensile and yield strength/ impact/ hardness, etc.) of the materials that are used for fabrication. Considering the temperature gradients involved during the welding operation a thorough understanding of the time-temperature effect is essential. Heat treatments are generally done at varying time and temperatures depending on the governing thickness and the type of materials. The structural effects on the materials or the properties of the materials tends to vary based on the heat treatment. All boiler and pressure vessel Code require that the properties of the material should be intact and meet the minimum Code specification requirements after all the heat treatment operations are completed. ASME Code(s) like Sec I, Section VIII Division 1 and Division 2 and API recommended practices like API 934 calls for simulation heat treatment of test specimen of the material used in fabrication to ascertain whether the intended material used in construction meets the required properties after all heat treatment operations are completed. The work reported in this paper — “Heat treatment of fabricated components and the effect on properties of materials” is an attempt to review the heat treatment and the effect on the properties of materials that are commonly used in construction of boiler and pressure vessel. For this study, simulation heat treatment for PWHT of test specimen for CS/ LAS plate and forging material was carried out as specified in ASME Section VIII Div 1, Div 2 and API 934-C. The results of heat treatment on material properties are plotted and compared. In conclusion recommendations are made which purchaser/ manufacturer may consider for simulation heat treatment of test specimen.


1996 ◽  
Vol 118 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Z. F. Sang ◽  
Y. Z. Zhu ◽  
G. E. O. Widera

The main purpose of this paper is to provide an applicable method to establish reliability factors for expanded tube-to-tubesheet joints. The paper also reports on the results of a preliminary study to validate experimentally the reliability efficiencies listed in Table A-2 of Appendix A of Section VIII, Division 1, of the Boiler and Pressure Vessel Code (ASME, 1986), and tightness of expanded tube-tubesheet joints. A comparison between the actual reliability factors fr determined from testing the damage strength of the joint and calculated according to Appendix A-4 of the ASME Code and those of Table A-2 is carried out. The results are discussed in light of the restrictions inherent in Table A-2. It is confirmed that some existing values of fr are conservative, while others are less so.


1986 ◽  
Vol 108 (4) ◽  
pp. 518-520
Author(s):  
A. Selz

There has been a need for some time to provide rules for allowable stresses for short-time and infrequent loading such as earthquake and wind loads in Section VIII, Division 1 of the Boiler and Pressure Vessel Code. Such rules exist in Section VIII, Division 2, in Section III, and in many other Codes. Division 1 has been silent on the subject. This has caused some manufacturers to make their own rules, and some to overdesign their hardware. Neither situation is without problems. Therefore, in 1979 the Boiler and Pressure Vessel Committee undertook to develop rules for Section VIII, Division 1. This work resulted in the addition of paragraph UG-23(d) to the Code, in the Summer, 1983 Addenda. The paragraph permits an increase in general primary membrane stress of 20 percent for earthquake and wind loads for temperatures below the creep regime.


Sign in / Sign up

Export Citation Format

Share Document