Stainless Steel Pipe Welding With No Backing Gas

Author(s):  
Vaidyanath Rajan ◽  
Badri Narayanan ◽  
Michael Barrett ◽  
Kevin Beardsley

Abstract For pipe fabrication shops, stainless steel pipe welding typically represents 15%–20% of their business. The pipe materials fabricated in these shops are primarily austenitic stainless 304L and 316L pipe. The quality requirements in stainless pipe fabrication shops are determined by performance requirements for service applications in low temperature, high temperature or corrosive environments. To enable the performance required in these applications, codes, standards and recommended practices for welding are frequently written from a conventional GTAW or SMAW welding paradigm. In addition, for the root pass and the first fill pass made with GTAW, an inert backing gas is always recommended to minimize or eliminate the discoloration or oxidation on the ID surface of the pipe near the root pass. The use of GTAW with inert backing gas adds significant time, complexity and cost to the welding of stainless pipe. In stainless pipe shop fabrication, very few welding practices recognize or encourage the use of GMAW welding solutions for these applications, even though it is known to be a more productive and economical welding process. Moreover, the absence of a consistent and proven GMAW welding solution in terms of either no backing gas GMAW, alternative options for expensive shielding gases, implementing unique welding waveforms etc., proves to be a hindrance in the adoption of GMAW solutions for the welding of stainless pipe. In this paper, we discuss advances that have been made in producing acceptable stainless pipe welds with a 1G GMAW welding solution using an STT® waveform for the root pass and a unique “Rapid X™” waveform for fill passes with no use of backing gas. One goal of this project was to also find a shielding gas mixture to provide acceptable welds from root to cap that takes into account both welding process performance as well as fabrication of defect free welds. Six different shielding gas mixtures with varying amounts of Ar, He, CO2 and N2 were evaluated. Results indicate that STT/RAPID X™ welds made with 97%Ar/2%CO2/1%H2 provide very promising results in terms of weld appearance and other conventional metrics such as radiography, bends and tensile properties. However, assessment of the corrosion performance in comparison to welds made with conventional GTAW requires development of a better test protocol than the ASTM G48 Method A test for it to be relevant and meaningful.

2009 ◽  
Vol 83-86 ◽  
pp. 237-243
Author(s):  
Mohammad Sedighi ◽  
B. Davoodi

Due to the intense concentration of heat in the welding process, residual stresses are produced in the specimen. One of the most effective ways to relief welding stress is Post Welding Heat Treatment (PWHT). In this paper, finite element method is employed to model and analyze PWHT for two pass butt-welded SUS304 stainless steel pipe. In this simulation, firstly, the welding process has been modeled. Then the stress distribution of the specimen has been transferred to a second analysis for stress relaxation modeling. Norton law is used to investigate creep in stress relief process. Experimental tests are also carried out to verify the effectiveness of the proposed numerical models. The hole drilling method is used to measure the stress distribution in the specimen. The residual stress distribution data before and after PWHT are compared to investigate the effect of heat treatment on residual stress. Based on the modeling and experimental results, the tensile and compressive stresses distributions have been reduced. They are in a reasonable agreement with each other and prove the capability of the proposed modeling technique to simulate PWHT.


Sign in / Sign up

Export Citation Format

Share Document