The Effects of Varying Frictional Contact Boundary Conditions in Finite Element Analysis of Mandibular Parasymphyseal Fracture

Author(s):  
Victor Caraveo ◽  
Scott Lovald ◽  
Tariq Khraishi ◽  
Jon Wagner ◽  
Brett Baack

FE modeling of biological tissues and physiological behavior is now becoming common practice with the improvement in finite element analysis (FEA) software and the significant increase in capability of computing resources. There are many uses for FEA of this nature, one of which has been simulating the mechanical behavior of implant devices for fracture repair. FE analysis offers insight into the mechanistic behavior of fixation plates used in rigid internal fixation and, if modeled carefully, could eventually become an accurate design tool.

2011 ◽  
Vol 462-463 ◽  
pp. 547-552 ◽  
Author(s):  
Shingo Ozaki

In the present study, the rate- and state-dependent friction model [Hashiguchi and Ozaki, 2008] is implemented in the dynamic finite element method. The typical rate- and state-dependent frictional contact problems, which are consisted by elastic and rigid bodies having simple shapes, are then analyzed by the present method. The validity of the present method for the microscopic sliding and stick-slip instability is examined under various dynamic characteristics of the system, such as contact load, elastic stiffness, driving velocity and frictional properties. It is shown that the present method can solve simultaneously not only rate- and state-dependent frictional behavior on the contact boundary but also coupling effects with internal deformations, whereas it cannot predicted by the conventional finite element analysis with the Coulomb’s friction law.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


Author(s):  
Paul M. Kurowski

The Finite Element Analysis (FEA) is becoming increasingly popular among design engineers using it as one of many product design tools. Safe and cost efficient use of FEA as a product design tool requires training, different from that presently found in undergraduate curriculum of mechanical engineering students. The specific requirements of design engineers for training in the field of FEA have been addressed by the author in a number of professional development courses in FEA, catering specifically to the needs of design engineers. This paper discuses tools and methods used in the development and delivery of these courses and their applicability to the undergraduate courses taught in Canadian Engineering schools.


2008 ◽  
Vol 48 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Daichao Sheng ◽  
Haruyuki Yamamoto ◽  
Peter Wriggers

2005 ◽  
Vol 127 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Ravi Chandra Sikakollu ◽  
Lemmy Meekisho ◽  
Andres LaRosa

This paper deals with the design and analysis of a horizontal thermal actuator common in MEMS applications using Finite Element Analysis; with the objective of exploring means to improve its sensitivity. The influence of variables like voltage and the dimensions of the cold arm of the actuator unit were examined by comprehensive, coupled thermal-stress analyses. Simulation results from this study showed that the sensitivity of the actuator increases with the applied voltage as well as the width of the cold arm of the thermal actuator. An important observation made from this study is that the size and thermal boundary conditions at the fixed end of the actuator primarily control the stroke and the operating temperature of the actuator for a given potential difference between cold and hot arms. The coupled field analyses also provided a design tool for maximizing the service voltage and dimensional variables without compromising the thermal or structural integrity of the actuator.


Sign in / Sign up

Export Citation Format

Share Document