A Confined Compression Technique for Hydraulic Conductivity Measurement in Soft Tissues

Author(s):  
Brian E. O’Neill ◽  
Timothy P. Quinn ◽  
King C. P. Li

Multiphasic tissue models have been used extensively to predict the behavior of cartilaginous tissues [1]. Their application to other soft tissues, however, has often been overlooked. Unlike the more commonly used continuum model of the viscoelastic solid [2], multiphasic models allow us to infer the behaviors and properties of tissue subcomponents by observing the behavior of the tissue whole. As a great deal of tissue function and structure is related to the control and transport of fluids and fluid-borne agents, there is clearly a need for this insight in all tissues. For example, there has been a great deal of interest recently in the possibility of modifying the flow properties of solid tumors and other tissues to allow the targeted delivery of large molecular weight drugs, such as chemotherapeutic or genetic agents [3–4]. It is well known that the high interstitial fluid pressures, confused vasculature, and lack of a lymphatic system prevent the effective distribution of directly injected or systemically administered drugs into tumors [3]. Increasing the effective permeability of these tumors can ameliorate these issues and allow for more effective treatment. A handful of studies have found that the biphasic model, along with some basic experimental tools, can reasonably represent the flow properties of tumors [4–5]. In this paper, we describe a technique using a simple confined compression experiment with the biphasic model to measure the hydraulic conductivity of samples of cardiac tissue.

Author(s):  
Heath B. Henninger ◽  
Clayton J. Underwood ◽  
Gerard A. Ateshian ◽  
Jeffrey A. Weiss

Permeability is defined as the ability of a fluid to pass through a porous medium. The ease of water movement is a determinant of the interstitial fluid flow-dependent viscoelastic properties of hydrated soft tissues and also modulates transport of solutes. For articular cartilage, permeability has been quantified directly via permeation experiments and indirectly by analyzing the data from stress relaxation testing under confined compression. It is unclear whether these different methods result in consistent measurements. This further complicates quantification of the effect of an experimental treatment on permeability such as the removal of sulfated glycosaminoglycans (GAGs) [1, 2]. The objective of this study was to elucidate the impact of sulfated GAGs on the permeability of articular cartilage using direct permeation versus stress relaxation testing, and to assess any differences in permeability calculated from the two test methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Qiang Luo ◽  
Mengshi Liu ◽  
Tengfei Wang ◽  
Peng Wu

Hydraulic conductivity measurement through a fixed wall permeameter is a common practice to obtain the fluid transmissibility characteristics of soil matrix; however, sidewall leakage due to rigid wall effect may significantly influence the observed values for coarse-grained soils. In this study, the boundary flow error was identified through characterizing the geometrical properties of voids adjacent to the sidewall, and a parameter known as the boundary void ratio (eb) was proposed to account for this effect. The findings suggest that a fixed wall cell containing coarse soils would unavoidably generate extra voids at the interface between soil grains and inner rigid wall, contributing to a larger eb at the wall than void ratio within the soil bed; the measured hydraulic conductivity is increased primarily due to the apparatus-induced error. A two-dimensional geometric model was then established to estimate the eb value for uniformly sized coarse soils confined by a rigid permeameter wall, based on which a method was obtained for eliminating the boundary flow error from a fixed wall cell. The mathematical method was finally validated against experimental data from existing literature. It can be concluded that the boundary condition at sidewall featuring unwanted gaps lead to overestimation of the coefficient of permeability; however, the proposed correction method could adequately eliminate the boundary flow error for uniformly sized coarse-grained soils tested within a rigid wall cell.


2001 ◽  
Vol 123 (5) ◽  
pp. 418-424 ◽  
Author(s):  
Wolfgang Ehlers ◽  
Bernd Markert

Based on the Theory of Porous Media (mixture theories extended by the concept of volume fractions), a model describing the mechanical behavior of hydrated soft tissues such as articular cartilage is presented. As usual, the tissue will be modeled as a materially incompressible binary medium of one linear viscoelastic porous solid skeleton saturated by a single viscous pore-fluid. The contribution of this paper is to combine a descriptive representation of the linear viscoelasticity law for the organic solid matrix with an efficient numerical treatment of the strongly coupled solid-fluid problem. Furthermore, deformation-dependent permeability effects are considered. Within the finite element method (FEM), the weak forms of the governing model equations are set up in a system of differential algebraic equations (DAE) in time. Thus, appropriate embedded error-controlled time integration methods can be applied that allow for a reliable and efficient numerical treatment of complex initial boundary-value problems. The applicability and the efficiency of the presented model are demonstrated within canonical, numerical examples, which reveal the influence of the intrinsic dissipation on the general behavior of hydrated soft tissues, exemplarily on articular cartilage.


2005 ◽  
Vol 28 (5) ◽  
pp. 12527 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
AT Yeung ◽  
SM Sadek

Sign in / Sign up

Export Citation Format

Share Document