wall cell
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ashna Maredia ◽  
David Guzzardi ◽  
Mohammad Aleinati ◽  
Fatima Iqbal ◽  
Arshroop Khaira ◽  
...  

Abstract Background The dilation of the aorta that occurs as a consequence of a congenitally bicuspid aortic valve (BAV) is associated with a risk of dissection, aneurysm or rupture. With progressive aortopathy, surgery is often recommended, but current patient selection strategies have limitations. A blood-based assay to identify those who would most benefit from prophylactic surgery would be an important medical advance. In a proof-of-concept study, we sought to identify aorta-specific differentially methylated regions (DMRs) detectable in plasma cell-free DNA (cfDNA) obtained from patients undergoing surgery for BAV-associated aortopathy. Methods We used bioinformatics and publicly available human methylomes to identify aorta-specific DMRs. We used data from 4D-flow cardiac magnetic resonance imaging to identify regions of elevated aortic wall shear stress (WSS) in patients with BAV-associated aortopathy undergoing surgery and correlated WSS regions with aortic tissue cell death assessed using TUNEL staining. Cell-free DNA was isolated from patient plasma, and levels of candidate DMRs were correlated with aortic diameter and aortic wall cell death. Results Aortic wall cell death was not associated with maximal aortic diameter but was significantly associated with elevated WSS. We identified 24 candidate aorta-specific DMRs and selected 4 for further study. A DMR on chromosome 11 was specific for the aorta and correlated significantly with aortic wall cell death. Plasma levels of total and aorta-specific cfDNA did not correlate with aortic diameter. Conclusions In a cohort of patients undergoing surgery for BAV-associated aortopathy, elevated WSS created by abnormal flow hemodynamics was associated with increased aortic wall cell death which supports the use of aorta-specific cfDNA as a potential tool to identify aortopathy and stratify patient risk.


2021 ◽  
Vol 7 (7) ◽  
pp. 501
Author(s):  
Catarina Vaz ◽  
Aida Pitarch ◽  
Emilia Gómez-Molero ◽  
Ahinara Amador-García ◽  
Michael Weig ◽  
...  

Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.


Author(s):  
Catarina Vaz ◽  
Aida Pitarch ◽  
Emilia Gómez-Molero ◽  
Ahinara Amador-García ◽  
Michael Weig ◽  
...  

Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251922
Author(s):  
Bruce D. Kohorn ◽  
Bridgid E. Greed ◽  
Gregory Mouille ◽  
Stéphane Verger ◽  
Susan L. Kohorn

Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).


2021 ◽  
Vol 8 ◽  
Author(s):  
Cecilia Gola ◽  
Diana Giannuzzi ◽  
Andrea Rinaldi ◽  
Selina Iussich ◽  
Paola Modesto ◽  
...  

Osteosarcoma (OSA) represents the most common primary bone tumor in dogs and is characterized by a highly aggressive behavior. Cell lines represent one of the most suitable and reproducible pre-clinical models, and therefore the knowledge of their molecular landscape is mandatory to investigate oncogenic mechanisms and drug response. The present study aims at determining variants, putative driver genes, and gene expression aberrations by integrating whole-exome and RNA sequencing. For this purpose, eight canine OSA cell lines and one matched pair of primary tumor and normal tissue were analyzed. Overall, cell lines revealed a mean tumor mutational burden of 9.6 mutations/Mb (range 3.9–16.8). Several known oncogenes and tumor suppressor genes, such as ALK, MYC, and MET, were prioritized as having a likely role in canine OSA. Mutations in eight genes, previously described as human OSA drivers and including TP53, PTCH1, MED12, and PI3KCA, were retrieved in our cell lines. When variants were cross-referenced with human OSA driver mutations, the E273K mutation of TP53 was identified in the Wall cell line and tumor sample. The transcriptome profiling detected two possible p53 inactivation mechanisms in the Wall cell line on the one hand, and in D17 and D22 on the other. Moreover, MET overexpression, potentially leading to MAPK/ERK pathway activation, was observed in D17 and D22 cell lines. In conclusion, our data provide the molecular characterization of a large number of canine OSA cell lines, allowing future investigations on potential therapeutic targets and associated biomarkers. Notably, the Wall cell line represents a valuable model to empower prospective in vitro studies both in human and in dogs, since the TP53 driver mutation was maintained during cell line establishment and was widely reported as a mutation hotspot in several human cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shutian Yu ◽  
Xinyue Ni ◽  
Fansheng Chen

The design of the thermal protection system requires high-precision and high-reliability CFD simulation for validation. To accurately predict the hypersonic aerodynamic heating, an overall simulation strategy based on mutual selection is proposed. Foremost, the grid criterion based on the wall cell Reynolds number is developed. Subsequently, the dependence of the turbulence model and the discretization scheme is considered. It is suggested that the appropriate value of wall cell Reynolds number is 1 through careful comparison between one another and with the available experimental data. The excessive number of cells is not recommended due to time-consuming computation. It can be seen from the results that the combination of the AUSM+ discretization scheme and the Spalart-Allmaras turbulence model has the highest accuracy. In this work, the heat flux error of the stagnation point is within 1%, and the overall average relative error is within 10%.


2021 ◽  
Author(s):  
Lucas Farinazzo Marques ◽  
Ivan Rodrigo Wolf ◽  
Lucas Cardoso Lazari ◽  
Lauana Fogaça de Almeida ◽  
Amanda Piveta Schnepper ◽  
...  

AbstractThe ethanol disturbs the cell cycle, transcription, translation, protein folding, cell wall, membranes, and many Saccharomyces cerevisiae metabolic processes. Long non-coding RNAs (lncRNAs) are regulatory molecules binding onto the genome or proteins. The number of lncRNAs described for yeast is still scarce, and little is known concerning their roles in the system. There is a lack of knowledge concerning how lncRNAs are responsive to the ethanol tolerance in yeast and whether they act in this tolerance. Hence, by using RNA-Seq data from S. cerevisiae strains with different ethanol tolerance phenotypes, we found the severe ethanol responsive lncRNAs. We modeled how they participate in the ethanol tolerance by analyzing lncRNA-protein interactions. The results showed that the EtOH tolerance responsive lncRNAs, in both higher tolerant and lower tolerant phenotypes, work on different pathways: cell wall, cell cycle, growth, longevity, cell surveillance, ribosome biogenesis, intracellular transport, trehalose metabolism, transcription, and nutrient shifts. In summary, lncRNAs seems to interconnect essential systems’ modules to overcome the ethanol stress. Finally, here we also found the most extensive catalog of lncRNAs in yeast.


2021 ◽  
Vol 22 (2) ◽  
pp. 949
Author(s):  
Elzbieta Wolny ◽  
Aleksandra Skalska ◽  
Agnieszka Braszewska ◽  
Luis A. J. Mur ◽  
Robert Hasterok

Excess salinity is a major stress that limits crop yields. Here, we used the model grass Brachypodium distachyon (Brachypodium) reference line Bd21 in order to define the key molecular events in the responses to salt during germination. Salt was applied either throughout the germination period (“salt stress”) or only after root emergence (“salt shock”). Germination was affected at ≥100 mM and root elongation at ≥75 mM NaCl. The expression of arabinogalactan proteins (AGPs), FLA1, FLA10, FLA11, AGP20 and AGP26, which regulate cell wall expansion (especially FLA11), were mostly induced by the “salt stress” but to a lesser extent by “salt shock”. Cytological assessment using two AGP epitopes, JIM8 and JIM13 indicated that “salt stress” increases the fluorescence signals in rhizodermal and exodermal cell wall. Cell division was suppressed at >75 mM NaCl. The cell cycle genes (CDKB1, CDKB2, CYCA3, CYCB1, WEE1) were induced by “salt stress” in a concentration-dependent manner but not CDKA, CYCA and CYCLIN-D4-1-RELATED. Under “salt shock”, the cell cycle genes were optimally expressed at 100 mM NaCl. These changes were consistent with the cell cycle arrest, possibly at the G1 phase. The salt-induced genomic damage was linked with the oxidative events via an increased glutathione accumulation. Histone acetylation and methylation and DNA methylation were visualized by immunofluorescence. Histone H4 acetylation at lysine 5 increased strongly whereas DNA methylation decreased with the application of salt. Taken together, we suggest that salt-induced oxidative stress causes genomic damage but that it also has epigenetic effects, which might modulate the cell cycle and AGP expression gene. Based on these landmarks, we aim to encourage functional genomics studies on the responses of Brachypodium to salt.


Sign in / Sign up

Export Citation Format

Share Document