The Response of Tissue Engineered Cartilage to the Temporal Application of Transforming and Insulin-Like Growth Factors

Author(s):  
Christopher J. O’Conor ◽  
Kenneth W. Ng ◽  
Lindsay E. Kugler ◽  
Gerard A. Ateshian ◽  
Clark T. Hung

Agarose has been used as an experimental scaffold for cartilage tissue engineering research due to its biocompatibility with chondrocytes, support of cartilage tissue development, and ability to transmit mechanical stimuli [1–3]. Tissue engineering studies have demonstrated that the temporal application of transforming growth factor (TGF) β3 for only 2 weeks elicits rapid tissue development that results in mechanical properties approaching native values [4]. However, it is not known whether this response to a 2-week exposure to growth factors is unique to TGF-β3. Therefore, the present study characterizes the response of tissue engineered cartilage to the temporal application of the anabolic growth factors TGF-β1, TGF-β3, and insulin-like growth factor I (IGF-I).

Author(s):  
Lindsay E. Kugler ◽  
Kenneth W. Ng ◽  
Christopher J. O’Conor ◽  
Gerard A. Ateshian ◽  
Clark T. Hung

Agarose has been used as a model scaffold for cartilage tissue engineering research due to its maintenance of chondrocyte phenotype, support of cartilage tissue development, and ability to transmit mechanical stimuli [1–4]. In a previous study, the temporal application of TGF-β3 for only 2 weeks resulted in explosive growth in the functional properties of tissue engineered cartilage [5]. The role of scaffolds in tissue engineering includes providing a physiologic three-dimensional environment for cells, decreased path lengths for diffusion and retention of cell elaborated matrix. In past studies by our laboratory, it was hypothesized that the scaffold properties in engineered cartilage plays a crucial role in the retention of synthesized glycosaminoglycan (GAG) molecules, a major extracellular matrix constituent of articular cartilage [6, 7]. This study focuses on testing this hypothesis using 3%, 2%, and 1% (wt/vol) agarose as scaffolds for engineered cartilage.


2014 ◽  
Vol 20 (2) ◽  
pp. 106-125 ◽  
Author(s):  
Henning Madry ◽  
Ana Rey-Rico ◽  
Jagadeesh K. Venkatesan ◽  
Brian Johnstone ◽  
Magali Cucchiarini

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maimonah-Eissa Al-Masawa ◽  
Wan Safwani Wan Kamarul Zaman ◽  
Kien-Hui Chua

AbstractThe scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes’ expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.


Author(s):  
Adam Griebel ◽  
C. C. van Donkelaar ◽  
Corey P. Neu

Osteoarthritis (OA) is a debilitating disease for which no satisfactory treatment exists. Tissue engineering-based strategies have shown considerable potential for repair. Agarose is frequently used as a scaffold material, as chondrocytes maintain their phenotype and cells remain responsive to mechanical stimuli. To improve the mechanical quality of tissue engineered cartilage, recent studies aimed to reproduce the depth-dependent structure of healthy cartilage. One approach to achieve this is by applying depth-dependent mechanical stimuli via cyclically sliding a glass cylinder over the cell-seeded agarose construct [1,2]. The different strains applied to the surface and the deeper regions are expected to induce stratified matrix synthesis and therefore stratified tissue stiffness. Consequently, with the same external stimuli, the internal strain distribution may alter with ongoing tissue development. Such effect is important to understand in order to optimize mechanical loading regimes for cartilage tissue engineering.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tongguang Xiao ◽  
Weimin Guo ◽  
Mingxue Chen ◽  
Chunxiang Hao ◽  
Shuang Gao ◽  
...  

The scaffold is a key element in cartilage tissue engineering. The components of Wharton’s jelly are similar to those of articular cartilage and it also contains some chondrogenic growth factors, such as insulin-like growth factor I and transforming growth factor-β. We fabricated a tissue-engineered cartilage scaffold derived from Wharton’s jelly extracellular matrix (WJECM) and compared it with a scaffold derived from articular cartilage ECM (ACECM) using freeze-drying. The results demonstrated that both WJECM and ACECM scaffolds possessed favorable pore sizes and porosities; moreover, they showed good water uptake ratios and compressive moduli. Histological staining confirmed that the WJECM and ACECM scaffolds contained similar ECM. Moreover, both scaffolds showed good cellular adherence, bioactivity, and biocompatibility. MTT and DNA content assessments confirmed that the ACECM scaffold tended to be more beneficial for improving cell proliferation than the WJECM scaffold. However, RT-qPCR results demonstrated that the WJECM scaffold was more favorable to enhance cellular chondrogenesis than the ACECM scaffold, showing more collagen II and aggrecan mRNA expression. These results were confirmed indirectly by glycosaminoglycan and collagen content assessments and partially confirmed by histology and immunofluorescent staining. In conclusion, these results suggest that a WJECM scaffold may be favorable for future cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document