Application of Carbon Nanotubes in Cartilage Tissue Engineering

Author(s):  
Nadeen O. Chahine ◽  
Nicole M. Collette ◽  
Heather Thompson ◽  
Gabriela G. Loots

Carbon nanotubes (CNTs) are cylindrical allotropes of carbon that are nanometers in diameter and posses unique physical properties, positioning them as ideal materials for studying physiology at a single cell level. CNTs have the potential to become a very important component of medical therapeutics, likely acting as (a) drug delivery system [1], (b) existing as an interfacial layer in surgical implants [2,3], or (c) acting as scaffolding in tissue engineering [4,8]. While some studies have explored the use of CNTs as a novel material in regenerative medicine, they have not yet been fully evaluated in cellular systems. One major limitation of CNTs that must be overcome is their inherent cytotoxicity. The goal of this study is to assess the long-term biocompatibility of CNTs for chondrocyte growth. We hypothesize that CNT-based material in tissue engineering can provide an improved molecular sized substrate for stimulation of cellular growth, and structural reinforcement of the scaffold mechanical properties. Here we present data on the effects of CNTs on chondrocyte viability and biochemical deposition examined in composite materials of hydrogels + CNTs mixtures. Also, the effects of CNTs surface functionalization with polyethlyne glycol (PEG) or carboxyl groups (COOH) were examined.

2013 ◽  
Vol 1498 ◽  
pp. 59-66 ◽  
Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

ABSTRACTCartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension and surface nanoporosity were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter or suitable nanoporous structures. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce GAG and collagen synthesis that is indicative of chondrogenic differentiations of MSCs. Our novel scaffolds also performed better than controls, which make them promising for cartilage tissue engineering applications.


Author(s):  
Benjamin Holmes ◽  
Nathan J. Castro ◽  
Jian Li ◽  
Lijie Grace Zhang

Cartilage defects, which are caused by a variety of reasons such as traumatic injuries, osteoarthritis, or osteoporosis, represent common and severe clinical problems. Each year, over 6 million people visit hospitals in the U.S. for various knee, wrist, and ankle problems. As modern medicine advances, new and novel methodologies have been explored and developed in order to solve and improve current medical problems. One of the areas of investigation that has thus far proven to be very promising is tissue engineering [1, 2]. Since cartilage matrix is nanocomposite, the goal of the current work is to use nanomaterials and nanofabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds for facilitating human bone marrow mesenchymal stem cell (MSC) chondrogenesis. For this purpose, through electrospinning techniques, we designed a series of novel 3D biomimetic nanostructured scaffolds based on carbon nanotubes and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro hMSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, our in vitro differentiation results demonstrated that incorporation of the biomimetic carbon nanotubes and poly L-lysine coating can induce more chondrogenic differentiations of MSCs than controls, which make them promising for cartilage tissue engineering applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jarosław Markowski ◽  
Anna Magiera ◽  
Marta Lesiak ◽  
Aleksander L. Sieron ◽  
Jan Pilch ◽  
...  

Polymer substrates obtained from poly(lactic acid) (PLA) nanofibres modified with carbon nanotubes (CNTs) and gelatin (GEL) for cartilage tissue engineering are studied. The work presents the results of physical, mechanical, and biological assessment. The hybrid structure of PLA and gelatine nanofibres, carbon nanotubes- (CNTs-) modified PLA nanofibres, and pure PLA-based nanofibres was manufactured in the form of fibrous membranes. The fibrous samples with different microstructures were obtained by electrospinning method. Microstructure, physical and mechanical properties of samples made from pure PLA nanofibres, CNTs-, and gelatin-modified PLA-nanofibres were studied. The scaffolds were also testedin vitroin cell culture of human chondrocytes collected from patients. To assess the influence of the nanofibrous scaffolds upon chondrocytes, tests for cytotoxicity and genotoxicity were performed. The work reveals that the nanofibrous structures studied were neither genotoxic nor cytotoxic, and their microstructure, physical and mechanical properties create promising scaffolds for potential use in cartilage repairing.


Sign in / Sign up

Export Citation Format

Share Document