Determination of Anisotropic Solute Diffusivity in Human Lumbar Annulus Fibrosus by a Video-FRAP Method

Author(s):  
Francesco Travascio ◽  
Alicia R. Jackson ◽  
Wei Yong Gu

The intervertebral disc (IVD) is the largest avascular structure in the human body, consisting of the nucleus pulposus (NP) surrounded by the annulus fibrosus (AF), see Figure 1. Cellular nutrition occurs mainly by diffusion from the vascular network surrounding the disc [1]. Poor nutritional supply is believed to be one of the causes for disc degeneration [2–4]. Thus, it is important to investigate solute transport in IVD for understanding the etiology of IVD degeneration.

Author(s):  
John McMorran ◽  
Diane Gregory

Abstract In light of the correlation between chronic back pain and intervertebral disc degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus- annulus fibrosus interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates, the nucleus pulposus, and the annulus fibrosus, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized nucleus pulposus on the annulus fibrosus, and how injuries interrupting support to the annulus fibrosus may contribute to intervertebral disc degeneration.


2017 ◽  
Vol 54 (6) ◽  
pp. 945-952 ◽  
Author(s):  
Tove Hansen ◽  
Lucas A. Smolders ◽  
Marianna A. Tryfonidou ◽  
Björn P. Meij ◽  
Johannes C. M. Vernooij ◽  
...  

Since the seminal work by Hans-Jörgen Hansen in 1952, it has been assumed that intervertebral disc (IVD) degeneration in chondrodystrophic (CD) dogs involves chondroid metaplasia of the nucleus pulposus, whereas in nonchondrodystrophic (NCD) dogs, fibrous metaplasia occurs. However, more recent studies suggest that IVD degeneration in NCD and CD dogs is more similar than originally thought. Therefore, the aim of this study was to compare the histopathology of IVD degeneration in CD and NCD dogs. IVDs with various grades of degeneration (Thompson grade I–III, n = 7 per grade) from both CD and NCD dogs were used (14 CD and 18 NCD dogs, 42 IVDs in total). Sections were scored according to a histological scoring scheme for canine IVD degeneration, including evaluation of the presence of fibrocyte-like cells in the nucleus pulposus. In CD dogs, the macroscopically non-degenerated nucleus pulposus contained mainly chondrocyte-like cells, whereas the non-degenerated nucleus pulposus of NCD dogs mainly contained notochordal cells. The histopathological changes in degenerated discs were similar in CD and NCD dogs and resembled chondroid metaplasia. Fibrocytes were not seen in the nucleus pulposus, indicating that fibrous degeneration of the IVD was not present in any of the evaluated grades of degeneration. In conclusion, intervertebral disc degeneration was characterized by chondroid metaplasia of the nucleus pulposus in both NCD and CD dogs. These results revoke the generally accepted concept that NCD and CD dogs suffer from a different type of IVD degeneration, in veterinary literature often referred to as chondroid or fibroid degeneration, and we suggest that chondroid metaplasia should be used to describe the tissue changes in the IVD in both breed types.


2015 ◽  
Vol 84 (3) ◽  
pp. 157-166
Author(s):  
Witold Woźniak ◽  
Małgorzata Grzymisławska ◽  
Joanna Łupicka ◽  
Małgorzata Bruska ◽  
Adam Piotrowski ◽  
...  

Introduction. In the vast literature concerning the development of the intervertebral discs controversies exist as to the period of differentiation and structure of the nucleus pulposus and annulus fibrosus. These controversies result from different determination of age of the investigated embryos. Aim. Using embryos from departmental collection age of which was established according to international Carnegie staging and expressed in postfertilizational days, the differentiation of the intervertebral discs was traced. Material and methods. Study was performed on 34 embryos at developmental stages 13–23 (32–56 days). Embryos were serially sectioned in sagittal, frontal and horizontal planes. Sections were stained with various histological methods and impregnated with silver.Results. Division of sclerotomes into loose cranial and dense caudal zones (sclerotomites) was observed in embryos aged 32 days (stage 13). The intervertebral disc developed from the dense zone of sclerotome and was well recognized in embryos aged 33 days (stage 14). At the end of fifth week (embryos at stage 15, 36 days) the annulus fibrosus and the nucleus pulposus were seen. The annulus fibrosus differentiated into lateral and medial zones. Within the lateral zone cells were arranged into circular rows. These rows were considered as the first stage of laminar structure. In further developmental stages the laminae occupied both zones of the annulus fibrosus.Conclusions. The intervertebral discs develop from the dense zone of the sclerotome which is evident in embryos at stage 13 (32 days). Discs differentiate in embryos aged 33 days, when the nucleus pulposus and annulus fibrosus are recognized. In embryos aged 36 days in the annulus fibrosus circular rows forming laminar arrangement are seen.


2022 ◽  
Author(s):  
Remy E Walk ◽  
Hong Joo Moon ◽  
Simon Y Tang ◽  
Munish C Gupta

Study Design: Preclinical animal study. Objective: Evaluation of the degenerative progression resulting from either a partial- or full- width injury to the mouse lumbar intervertebral disc (IVD) using contrast-enhanced micro-computed tomography and histological analyses. We utilized a lateral-retroperitoneal surgical approach to access the lumbar IVD, and the injuries to the IVD were induced by either incising one side of the annulus fibrosus or puncturing both sides of the annulus fibrosus. The full-width injury caused dramatic reduction in nucleus pulposus hydration and significant degeneration. A partial-width injury produces localized deterioration around the annulus fibrosus site that resulted in local tissue remodeling without gross degeneration to the IVD. Methods: Female C57BL/6J mice of 3-4 months age were used in this study. They were divided into three groups to undergo a partial-width, full-width, or sham injuries. The L5/L6 and L6/S1 lumbar IVDs were surgically exposed using a lateral-retroperitoneal approach. The L6/S1 IVDs were injured using either a surgical scalpel (partial-width) or a 33G needle (full-width), with the L5/L6 serving as an internal control. These animals were allowed to recover and then sacrificed at 2-, 4-, or 8- weeks post-surgery. The IVDs were assessed for degeneration using contrast-enhanced microCT (CEμCT) and histological analysis. Results: The high-resolution 3D evaluation of the IVD confirmed that the respective injuries localized within one side of the annulus fibrosus or spanned the full width of the IVD. The full-width injury caused deteriorations in the nucleus pulposus after 2 weeks that culminated in significant degeneration at 8 weeks, while the partial width injury caused localized disruptions that remained limited to the annulus fibrosus. Conclusion: The use of CEμCT revealed distinct IVD degeneration profiles resulting from partial- and full- width injuries. The partial width injury may serve as a better model for IVD degeneration resulting from localized annulus fibrosus injuries in humans.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Umile Giuseppe Longo ◽  
Nicola Papapietro ◽  
Stefano Petrillo ◽  
Edoardo Franceschetti ◽  
Nicola Maffulli ◽  
...  

Intervertebral disc degeneration (IVD) is a frequent pathological condition. Conservative management often fails, and patients with IVD degeneration may require surgical intervention. Several treatment strategies have been proposed, although only surgical discectomy and arthrodesis have been proved to be predictably effective. The aim of biological strategies is to prevent and manage IVD degeneration, improve the function, the anabolic and reparative capabilities of the nucleus pulposus and annulus fibrosus cells, and inhibit matrix degradation. At present, clinical applications are still in their infancy. Further studies are required to clarify the role of mesenchymal stem cells and gene therapy for the prevention and treatment of IVD degeneration.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Tiefang Liu ◽  
Yonghao Wang ◽  
Zhengyang Xu ◽  
Tao Wu ◽  
Xiao Zang ◽  
...  

Abstract Background Degeneration of the intervertebral discs are very common diseases, indicating the specific or malignant changes in intervertebral disc component, structure and function. Imaging examination is currently used to evaluate the severity of lumbar intervertebral disc degeneration. This study was designed to investigate the diagnostic value of 3D LAVA-Flex in lumbar intervertebral disc degeneration. Material and methods Sagittal 3D LAVA-Flex and T2WI scans were performed in 45 patients with lumbar intervertebral disc degeneration. On T2WI, the degenerated intervertebral disc in every patient was evaluated using Pfirrmann grade. Then, the patients were re-evaluated using 3D LAVA-Flex with considerations of the distinction of nucleus pulposus and annulus fibrosus, hypointense signal of intervertebral disc and height of intervertebral disc. The evaluation results were compared between 3D LAVA-Flex and T2WI. Virtual endoscopy was also performed to evaluate the degenerated intervertebral disc. Results The intermediate–intense signal of nucleus pulposus and complete ring-shaped hyperintense signal of annulus fibrosus were found and the distinction of nucleus pulposus and annulus fibrosus was clear in the normal intervertebral disc on 3D LAVA-Flex. The incidence of linear hypointensity of narrowed intervertebral space (65/91) was higher than that of normal intervertebral space (4/134) (P = 0.000). A good consistency was shown between the LAVA-Flex grade and T2WI-based Pfirrmann grade. Virtual endoscopy based on 3D LAVA-Flex could help clearly show the anatomic relationship between the degenerated disc and intervertebral foramen. Conclusions 3D LAVA-Flex and T2WI show similar efficacy in evaluating lumbar intervertebral disc degeneration. 3D LAVA-Flex-based virtual endoscopy possesses great potential in the study of intervertebral disc abnormalities.


2018 ◽  
Vol 55 (3) ◽  
pp. 442-452 ◽  
Author(s):  
Wilhelmina Bergmann ◽  
Niklas Bergknut ◽  
Stefanie Veraa ◽  
Andrea Gröne ◽  
Hans Vernooij ◽  
...  

Equine intervertebral disc degeneration is thought to be rare and of limited clinical relevance, although research is lacking. To objectively assess pathological changes of the equine intervertebral disc and their clinical relevance, description of the normal morphology and a practical, biologically credible grading scheme are needed. The objectives of this study are to describe the gross and histological appearance of the equine intervertebral discs and to propose a grading scheme for macroscopic degeneration. Spinal units from 33 warmblood horses were grossly analyzed and scored. Of the 286 intervertebral discs analyzed, 107 (37%) were assigned grade 1 and grade 2 (considered normal) and were analyzed histologically. A nucleus pulposus and an annulus fibrosus could be identified macroscopically and histologically. Histologically, the nucleus pulposus was composed of a cartilaginous matrix and the annulus fibrosus of parallel collagenous bands. A transition zone was also histologically visible. Intra- and inter-observer reliability scores were high for all observers. Higher grades were associated with greater age. Gross changes associated with equine intervertebral disc degeneration (grades 3–5)—that is, yellow discoloration, cleft formation (tearing), and changes in consistency of the nucleus pulposus—were largely similar to those in humans and dogs and were most prevalent in the caudal cervical spine. Equine intervertebral disc degeneration was not associated with osteophyte formation. Changes of the vertebral bone were most common in the thoracolumbar spine but were not correlated with higher grades of intervertebral disc degeneration. Thus, changes of the vertebral bone should be excluded from grading for equine intervertebral disc degeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Umile Giuseppe Longo ◽  
Stefano Petrillo ◽  
Edoardo Franceschetti ◽  
Nicola Maffulli ◽  
Vincenzo Denaro

Intervertebral disc (IVD) degeneration is frequent, appearing from the second decade of life and progressing with age. Conservative management often fails, and patients with IVD degeneration may need surgical intervention. Several treatment strategies have been proposed, although only surgical discectomy and arthrodesis have been proved to be predictably effective. Biological strategies aim to prevent and manage IVD degeneration, improving the function and anabolic and reparative capabilities of the nucleus pulposus and annulus fibrosus cells and inhibiting matrix degradation. At present, clinical applications are still in their infancy. Further studies are required to clarify the role of growth factors and anticatabolic substances for prevention and management of intervertebral disc degeneration.


2020 ◽  
Vol 12 (534) ◽  
pp. eaay2380 ◽  
Author(s):  
Stephen R. Sloan ◽  
Christoph Wipplinger ◽  
Sertaç Kirnaz ◽  
Rodrigo Navarro-Ramirez ◽  
Franziska Schmidt ◽  
...  

Tissue-engineered approaches for the treatment of early-stage intervertebral disc degeneration have shown promise in preclinical studies. However, none of these therapies has been approved for clinical use, in part because each therapy targets only one aspect of the intervertebral disc’s composite structure. At present, there is no reliable method to prevent intervertebral disc degeneration after herniation and subsequent discectomy. Here, we demonstrate the prevention of degeneration and maintenance of mechanical function in the ovine lumbar spine after discectomy by combining strategies for nucleus pulposus augmentation using hyaluronic acid injection and repair of the annulus fibrosus using a photocrosslinked collagen patch. This combined approach healed annulus fibrosus defects, restored nucleus pulposus hydration, and maintained native torsional and compressive stiffness up to 6 weeks after injury. These data demonstrate the necessity of a combined strategy for arresting intervertebral disc degeneration and support further translation of combinatorial interventions to treat herniations in the human spine.


Sign in / Sign up

Export Citation Format

Share Document