Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking

Author(s):  
Yoon-Hyuk Kim ◽  
Won-Man Park ◽  
Bui Thi Thanh Phuong

Estimation of in-vivo joint contact forces and muscle forces during walking is important in order to protect the knee joint from injury or provide adequate rehabilitation and exercise protocols [1]. Assessment of muscle forces can help to understand the neuro-muscular coordination related on neurological problems [2]. Accurate quantification of joint contact forces can help to characterize the contact phenomena of articular cartilage at the joint related on osteoarthritis and to improve the implant design for the longevity of joint arthroplasty [3].

Author(s):  
Justin W. Fernandez ◽  
Hyung J. Kim ◽  
Massoud Akbarshahi ◽  
Jonathan P. Walter ◽  
Benjamin J. Fregly ◽  
...  

Many studies have used musculoskeletal models to predict in vivo muscle forces at the knee during gait [1, 2]. Unfortunately, quantitative assessment of the model calculations is often impracticable. Various indirect methods have been used to evaluate the accuracy of model predictions, including comparisons against measurements of muscle activity, joint kinematics, ground reaction forces, and joint moments. In a recent study, an instrumented hip implant was used to validate calculations of hip contact forces directly [3]. The same model was subsequently used to validate model calculations of tibiofemoral loading during gait [4]. Instrumented knee implants have also been used in in vitro and in vivo studies to quantify differences in biomechanical performance between various TKR designs [5, 6]. The main aim of the present study was to evaluate model predictions of knee muscle forces by direct comparison with measurements obtained from an instrumented knee implant. Calculations of muscle and joint-contact loading were performed for level walking at slow, normal, and fast speeds.


2019 ◽  
Author(s):  
◽  
Swithin Samuel Razu

"The goal of this dissertation is to develop a musculoskeletal model and corroborate model predictions to experimentally measured in vivo knee contact forces, in order to study the biomechanical consequences of two different total knee arthroplasty designs. The two main contributions of this dissertation are: (1) Corroboration to experimental data: The development of an EMG-driven, full-body, musculoskeletal model with subject-specific leg geometries including deformable contacts, ligaments, 6DOF knee joint, and a shoe-floor model that can concurrently predict muscle forces, ligament forces, and joint contact forces. Model predictions of tibiofemoral joint contact forces were evaluated against the subject-specific in vivo measurements from the instrumented TKR for three distinctly different styles of over ground gait. (2) Virtual surgery in TKA: The musculoskeletal modeling methodology was then used to develop a model for one healthy participant with a native knee and then virtually replacing the native knee with fixed-bearing and mobile-bearing total knee arthroplasty designs performing gait and step-up tasks. This approach minimized the biomechanical impact of variations in sex, geometry, implant size, design and positioning, ligament location and tension, and muscle forces found across patients. The differences in biomechanics were compared for the two designs. 1.2 Significance of this Research The world health organization ranks musculoskeletal disorders as the second largest contributor to disability worldwide. Conservative estimates put the national cost of direct care for musculoskeletal disease at $212.7 billion a year [1]. Many people who suffer from neuromuscular or musculoskeletal diseases may benefit from the insights gained from surgery simulations, since musculoskeletal reconstructions are commonly performed on these individuals. Improved surgical outcomes will benefit these individuals not only in the short-term, but also in the long-term, since their future rehabilitation needs may be reduced. For example, although total knee arthroplasty is a common surgical procedure for the treatment of osteoarthritis with over 700,000 procedures performed each year [2], many patients are unhappy with the ultimate results [3]. Ten to 30% of patients report [4] pain, dissatisfaction with function, and the need for further surgery such as revision after the initial surgery resulting in costs exceeding $11 billion [5]. Potentially, simulation studies that quantify the important biomechanical variables will reduce the need for revision surgeries in patients."--Introduction.


2018 ◽  
Vol 34 (4) ◽  
pp. 336-341 ◽  
Author(s):  
Stefan Sebastian Tomescu ◽  
Ryan Bakker ◽  
Tyson A.C. Beach ◽  
Naveen Chandrashekar

Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower-extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single-leg jump landing. Kinematics was captured with a 3D motion capture system, and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using 2 matched filter frequencies (10–10 Hz and 15–15 Hz) and 2 unmatched filter frequencies (10–50 Hz and 15–50 Hz). Musculoskeletal simulations using computed muscle control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10–50 Hz and 15–50 Hz) conditions than in the matched (10–10 Hz and 15–15 Hz) conditions (P < .05). Resultant joint contact forces and reserve (nonphysiologic) moments were similarly larger in the unmatched filter categories (P < .05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics that are not physiologic.


Author(s):  
Aarthi S. Shankar ◽  
Trent M. Guess

Patellofemoral Pain (PFP) syndrome is a very common knee disorder. A possible cause may be excessive lateral force applied by the quadriceps and the patellar tendon producing an abnormal distribution of force and pressure within the patellofemoral joint [1]. EMG and in-vivo studies have been conducted to understand the function of the quadriceps and its relationship with PFP [2,3]. These studies suggest a strong relationship between muscle forces and PFP which originates from high lateral retropatellar contact forces. A dynamic computational model of the knee was developed which includes the quadriceps muscles Rectus Femoris (RF), Vastus Intermedius (VI), Vastus Lateralis (VL), and Vastus Medialis (VM) represented as force vectors. The model can predict retro-patellar contact pressures and the action of the individual quadriceps muscles based on the predicted pressures. The objective of this study was to develop a control system which could optimize the distribution of quadriceps muscle forces to minimize contact pressure between the patella and the femur of the knee during a squat.


Author(s):  
Benjamin J. Fregly ◽  
Yi-Chung Lin ◽  
Jonathan P. Walter ◽  
Marcus G. Pandy ◽  
Scott A. Banks ◽  
...  

Musculoskeletal computer models capable of predicting muscle and joint contact forces accurately during human movement could facilitate the design of improved joint replacements and new clinical treatments for articular cartilage defects or movement-related disorders [1]. A primary challenge to developing such predictions is the non-uniqueness of the calculated muscle forces, often referred to as the “muscle redundancy problem” [2]. Since more muscles act on the skeleton than the number of degrees of freedom in the skeleton, an infinite number of possible muscle force solutions exist.


Author(s):  
Hannah J. Lundberg ◽  
Markus A. Wimmer

Detailed knowledge of in vivo knee contact forces and the contribution from muscles, ligaments, and other soft-tissues to knee joint function are essential for evaluating total knee replacement (TKR) designs. We have recently developed a mathematical model for calculating knee joint contact forces using parametric methodology (Lundberg et al., 2009). The numerical model calculates a “solution space” of three-dimensional contact forces for both the medial and lateral compartments of the tibial plateau. The solution spaces are physiologically meaningful, and represent the result of balancing the external moments and forces by different strategies.


Author(s):  
Hannah J. Lundberg ◽  
Christopher B. Knowlton ◽  
Diego Orozco ◽  
Markus A. Wimmer

Knowledge of in vivo knee contact forces is essential for evaluating total knee replacement (TKR) designs. This is particularly true for activities other than walking, because there is still a limited understanding of its impact on wear. It has been shown that wear scars from retrieved implants have obvious differences compared with simulator tested components in both size of worn area and in damage mode. The divergence could be related to the omission of other activities than walking when testing components in the simulator. The purpose of this study was to use a parametric numerical model for predicting joint contact forces during stair ascent/descent and chair sitting/rising and compare those to measured forces from a database. We hypothesized that the contact force output of the numeric model would be similar to the measured forces.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Florent Moissenet ◽  
Laurence Chèze ◽  
Raphaël Dumas

While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Deva D. Chan ◽  
Luyao Cai ◽  
Kent D. Butz ◽  
Stephen B. Trippel ◽  
Eric A. Nauman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document