Glycosaminoglycan and Collagen Remodeling During In Vitro Dynamic Compression of Articular Cartilage: Experiments and Finite Element Modeling

Author(s):  
Kevin A. Yamauchi ◽  
Christopher B. Raub ◽  
Albert C. Chen ◽  
Robert L. Sah ◽  
Scott J. Hazelwood ◽  
...  

The biomechanical properties of articular cartilage (AC) can be altered by chemical and mechanical stimuli. Dynamic unconfined compression (UCC) has been shown to increase biosynthesis at moderate strain amplitudes (1–4%) and frequencies from 0.01Hz. to 0.1Hz [1]. Furthermore, interstitial fluid velocity and maximum principle strain have been proposed as candidates for controlling glycosaminoglycan (GAG) and collagen (COL) remodeling, respectively [2,3]. The goal of this study was to integrate in vitro growth data, including biochemical and microstructural properties, into a computational continuum mixture model to elucidate potential mechanical triggers for AC tissue remodeling.

Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


2015 ◽  
Vol 28 (04) ◽  
pp. 234-239 ◽  
Author(s):  
K. D. Hutcheson ◽  
S. E. Elder ◽  
J. R. Butler

SummaryObjective: To evaluate the biomechanical properties of single 3.5 mm broad dynamic compression plate (DCP) and double 3.5 mm String-of-Pearls (SOP) plate constructs in single-cycle bending and torsion. We hypothesized that the double SOP construct would outperform the broad DCP in both bending and torsional testing.Methods: Broad DCP plates and double 3.5 mm SOP plates were secured to a previously validated bone model in an effort to simulate bridging osteosynthesis. Constructs were tested in both four-point bending and torsional testing.Results: The double SOP constructs had significantly greater bending stiffness, bending strength, bending structural stiffness, and torsional stiffness when compared to the broad DCP constructs. The single broad DCP constructs had significantly higher yield torque and yield angles during torsional testing.Clinical relevance: Although the in vitro mechanical performance of the double SOP construct was significantly greater than the single broad DCP constructs under bending loads, the actual differences were small. Various patient, fracture, and implant factors must be considered when choosing an appropriate implant for fracture fixation.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Adele Changoor ◽  
Liah Fereydoonzad ◽  
Alex Yaroshinsky ◽  
Michael D. Buschmann

In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at −20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, p<0.001), Ef (to 3.1±41.3% of control values, p=0.046), Em (to 6.4±8.5% of control values, p<0.0001), and an increase in k (to 2676.7±2562.0% of control values, p=0.004) were observed at day 12 of refrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.


2003 ◽  
Vol 125 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Chun-Yuh Huang ◽  
Michael A. Soltz ◽  
Monika Kopacz ◽  
Van C. Mow ◽  
Gerard A. Ateshian

A biphasic-CLE-QLV model proposed in our recent study [2001, J. Biomech. Eng., 123, pp. 410–417] extended the biphasic theory of Mow et al. [1980, J. Biomech. Eng., 102, pp. 73–84] to include both tension-compression nonlinearity and intrinsic viscoelasticity of the cartilage solid matrix by incorporating it with the conewise linear elasticity (CLE) model [1995, J. Elasticity, 37, pp. 1–38] and the quasi-linear viscoelasticity (QLV) model [Biomechanics: Its foundations and objectives, Prentice Hall, Englewood Cliffs, 1972]. This model demonstrates that a simultaneous prediction of compression and tension experiments of articular cartilage, under stress-relaxation and dynamic loading, can be achieved when properly taking into account both flow-dependent and flow-independent viscoelastic effects, as well as tension-compression nonlinearity. The objective of this study is to directly test this biphasic-CLE-QLV model against experimental data from unconfined compression stress-relaxation tests at slow and fast strain rates as well as dynamic loading. Twelve full-thickness cartilage cylindrical plugs were harvested from six bovine glenohumeral joints and multiple confined and unconfined compression stress-relaxation tests were performed on each specimen. The material properties of specimens were determined by curve-fitting the experimental results from the confined and unconfined compression stress relaxation tests. The findings of this study demonstrate that the biphasic-CLE-QLV model is able to describe the strain-rate-dependent mechanical behaviors of articular cartilage in unconfined compression as attested by good agreements between experimental and theoretical curvefits (r2=0.966±0.032 for testing at slow strain rate; r2=0.998±0.002 for testing at fast strain rate) and predictions of the dynamic response r2=0.91±0.06. This experimental study also provides supporting evidence for the hypothesis that both tension-compression nonlinearity and intrinsic viscoelasticity of the solid matrix of cartilage are necessary for modeling the transient and equilibrium responses of this tissue in tension and compression. Furthermore, the biphasic-CLE-QLV model can produce better predictions of the dynamic modulus of cartilage in unconfined dynamic compression than the biphasic-CLE and biphasic poroviscoelastic models, indicating that intrinsic viscoelasticity and tension-compression nonlinearity of articular cartilage may play important roles in the load-support mechanism of cartilage under physiologic loading.


Author(s):  
A. Cilingir ◽  
W. Wilson ◽  
K. Ito ◽  
C. C. van Donkelaar

In vivo [1] and in vitro [2–4] studies show that cell and matrix alignment can be significantly affected by mechanical stimuli. Even in highly aligned engineered tissues, cells are able to remodel the collagen orientation when loading conditions are altered [4].


2014 ◽  
Vol 27 (06) ◽  
pp. 430-435 ◽  
Author(s):  
T. W. G. Gibson ◽  
R. J. Runciman ◽  
C. W. Bruce

SummaryObjectives: The purpose of this study was to compare the stiffness, yield load, ultimate load at failure, displacement at failure, and mode of failure in cantilever bending of locking compression plates (LCP) and dynamic compression plates (DCP) in an acute failure ilial fracture model. Our hypothesis was that the LCP would be superior to the DCP for all of these biomechanical properties.Methods: Ten pelves were harvested from healthy dogs euthanatized for reasons unrelated to this study and divided into two groups. A transverse osteotomy was performed and stabilized with either a 6-hole DCP applied in compression or a 6-hole LCP. Pelves were tested in cantilever bending at 20 mm/min to failure and construct stiffness, yield load, ultimate load at failure, displacement at failure, and mode of failure were compared.Results: The mean stiffness of DCP constructs (193 N/mm [95% CI 121 – 264]) and of LCP constructs (224 N/mm [95% CI 152 – 295]) was not significantly different. Mean yield load of DCP constructs (900 N [95% CI 649 –1151]) and of LCP constructs (984 N [95% CI 733 –1235]) was not significantly different. No significant differences were found between the DCP and LCP constructs with respect to mode of failure, displacement at failure, or ultimate load at failure.Clinical significance: Our study did not demonstrate any differences between DCP and LCP construct performance in acute failure testing in vitro.


2009 ◽  
Vol 197 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Vladimir Juras ◽  
Michal Bittsansky ◽  
Zuzana Majdisova ◽  
Pavol Szomolanyi ◽  
Irene Sulzbacher ◽  
...  

2012 ◽  
Vol 77 (12) ◽  
pp. 1709-1722 ◽  
Author(s):  
Jasmina Stojkovska ◽  
Jovana Zvicer ◽  
Zeljka Jovanovic ◽  
Vesna Miskovic-Stankovic ◽  
Bojana Obradovic

Production of nanocomposite alginate microbeads with electrochemically synthesized silver nanoparticles (AgNPs) based on electrostatic extrusion technique was investigated with respect to potentials for utilization in pharmaceutical and biomedical applications. It was shown that electrochemical synthesis of AgNPs results in reduction of practically all Ag+ ions present in the initial solution yielding stable Ag/alginate colloid solutions that were demonstrated to be suitable for sterilization, manipulation, and electrostatic extrusion with retention of AgNPs. Presence of AgNPs in alginate colloid solutions had negligible effects on the size of the produced Ag/alginate microbeads, which was chiefly determined by the applied electrostatic potential during the extrusion. On the other hand, incorporation of AgNPs within the alginate hydrogel induced slight changes in biomechanical properties determined in a biomimetic bioreactor, so that packed beds of nanocomposite Ag/alginate microbeads exhibited slightly higher dynamic compression modulus as compared to that of control alginate microbeads (154 ? 4 and 141 ? 2 kPa, respectively). On the other hand, equilibrium unconfined compression modulus was significantly lower for nanocomposite microbeads as compared to that of controls (34 ? 2 and 47 ? 0.5 kPa, respectively).


Sign in / Sign up

Export Citation Format

Share Document