Repeatability, Reproducibility, and Calibration of the MyotonPro® on Tissue Mimicking Phantoms

Author(s):  
John Dougherty ◽  
Emily Schaefer ◽  
Kalyani Nair ◽  
Joseph Kelly ◽  
Alfonse Masi

The MyotonPro® (Myoton AS, Tallinn, Estonia) is commonly used to quantify stiffness properties of living tissues in situ. Current studies quantify the dynamic stiffness properties of living tissues, but do not validate or compare these measurements to a standardized method. Additionally, living tissue, being dynamic in nature, presents much variability in data collection. To address these issues this study focuses on the repeatability and reproducibility of the MyotonPro® on polymeric gel-based tissue phantoms. In addition, a correlation study is also performed to translate dynamic stiffness to a more standardized property, Young’s modulus. Such studies help to confirm the reliability of the measurements obtained in situ.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Chung Yiin Wong ◽  
Kunlanan Kiatkittipong ◽  
Worapon Kiatkittipong ◽  
Seteno K. O. Ntwampe ◽  
Man Kee Lam ◽  
...  

Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.


2021 ◽  
Author(s):  
◽  
Jacqueline Iseli

<p>This thesis provides the first documentation and description of the signs created and used by deaf individuals in Vanuatu. The specific aims of this research were as follows: to establish the sociolinguistic context experienced by deaf people in Vanuatu; to identify the repertoire and characteristics of signs used by the deaf participants; to compare features of participants’ individual signs with the characteristics of home signs and emerging sign languages; and to consider the degree of similarity and potential similarity of signs between participants and how this reflects individuals’ opportunities for contact with other deaf people and signing interlocutors. The limitations of this study are that field methodology for data collection was developed in situ as conditions allowed. The sociolinguistic context for deaf Ni-Vanuatu confirms that language isolation leads to marginalisation from community and society. The study established that these home sign lexicons were limited in quantity and conceptual range, and that shared background knowledge was essential for comprehension. Overall, 22 handshapes were documented, and the predominant handshapes unmarked. Most participants preferred handling strategy for depicting signs. Some evidence of noun-verb distinction was noted in the repertoire of some participants. However, across this range of formational characteristics, results showed significant individual variations. Furthermore, multiple barriers have precluded development of a shared sign language and any form of deaf community.</p>


2016 ◽  
Vol 08 (10) ◽  
pp. 929-943
Author(s):  
Nadine Nassif ◽  
Lena Abou Jaoude ◽  
Mhamad El Hage ◽  
Cordula A. Robinson

2020 ◽  
Author(s):  
Jonathan Bouvette ◽  
Hsuan-Fu Liu ◽  
Xiaochen Du ◽  
Ye Zhou ◽  
Andrew P. Sikkema ◽  
...  

ABSTRACTTomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by an order of magnitude and improve map resolution by ~1-3 Å compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.


Author(s):  
Daoyong Wang ◽  
Wencan Zhang ◽  
Mu Chai ◽  
Xiaguang Zeng

To reduce the vibration and shock of powertrain in the process of engine key on/off and vehicle in situ shift, a novel semi-active hydraulic damping strut is developed. The purpose of this paper is to study and discuss the dynamic stiffness model of the semi-active hydraulic damping strut. In this study, the dynamic characteristics of semi-active hydraulic damping strut were analyzed based on MTS 831 test rig first. Then, the dynamic stiffness model of semi-active hydraulic damping strut was established based on 2 degrees of freedom vibration system. In this research, a linear, fractional derivative and friction model was used to represent the nonlinear rubber bushing characteristic; the Maxwell model was used to describe the semi-active hydraulic damping strut body model; and the parameters of rubber bushing and semi-active hydraulic damping strut body were identified. The dynamic stiffness values were calculated with solenoid valve energized and not energized at amplitudes of 1 mm and 4 mm, which were consistent with experimental results in low-frequency range. Furthermore, the simplified dynamic stiffness model of the semi-active hydraulic damping strut was discussed, which showed that bushing can be ignored in low-frequency range. Then, the influence of equivalent spring stiffness, damping constant, and rubber bushing stiffness on the stiffness and damping capacity of the semi-active hydraulic damping strut were analyzed. Finally, the prototype of the semi-active hydraulic damping strut was developed and designed based on the vehicle in situ shift and engine key on/off situations, and experiments of the vehicle with and without semi-active hydraulic damping strut were carried out to verify its function.


2016 ◽  
Author(s):  
Yusuke Yamada ◽  
Masahiko Hiraki ◽  
Naohiro Matsugaki ◽  
Ryuichi Kato ◽  
Toshiya Senda

Sign in / Sign up

Export Citation Format

Share Document