rubber bushing
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)



2021 ◽  
pp. 1-22
Author(s):  
Liangcheng Dai ◽  
Maoru Chi ◽  
Chuanbo Xu ◽  
Hongxing Gao ◽  
Jianfeng Sun ◽  
...  


2021 ◽  
Author(s):  
Kai Yue ◽  
Yunqing Zhang ◽  
Peijun Xu


2021 ◽  
Vol 11 (3) ◽  
pp. 1170
Author(s):  
Yanfeng Han ◽  
Ting Tang ◽  
Guo Xiang ◽  
Hang Jia

The novelty of the present study is that it investigates the effect of propeller shaft deflection, caused by the propeller self-weight and interfacial mixed forces, on the fluid–solid–heat (FSH) coupling performance of water lubricated rubber stern bearing (WLRSB). In the FSH coupling model, the generalized average Reynolds equation and the Kogut–Etsion asperity contact model are used to determine the hydrodynamic and the elastic–plastic contact behaviors of WLRSB. In the thermal analysis, the journal, water film, and rubber bushing are considered as an integrated system (JWR system) using the Euler method. To prove the correctness of the developed model, the predicted results are verified by comparisons with the experimental results given in the literature. In addition, to assess the effect of the force-driven deflection during FSH simulation, comparisons of the FSH predictions between the aligned journal case and the deflected journal case are carried out. The results indicate that, especially under a heavy load condition, the deflection of the stern shaft should be incorporated into the lubrication gap between the journal–rubber interface during the analysis of FSH performance of the JWR system.



2021 ◽  
Author(s):  
Anvar Djuraev ◽  
Shavkat Behbudov ◽  
Abdurakhmon Amonov ◽  
Hakimboy Rakhimov
Keyword(s):  


2019 ◽  
Vol 16 (6) ◽  
pp. 706-716
Author(s):  
D. A. Tikhov-Tinnikov ◽  
V. S. Baradiev ◽  
A. I. Fedotov ◽  
A. V. Alekseev

Introduction. Rubber bushings are important parts of the spring systems of modern vehicles. The properties determine not only the comfort of car movement, but also affect the elastic suspension characteristics. When a bushing is deformed, linear sections appear in characteristics. It is advisable to describe such characteristics using a mathematical model based on the classical elements of Hooke and Saint-Venant. The paper presents a mathematical description of the bushing simulation functioning results, accuracy of approach, areas of application of the mathematical model.Materials and methods. The initial data was the experimental characteristic of a cylindrical automobile rubber bushing, obtained in harmonic mode at the 0.03 to 51 Hz frequency and the 0.4 to 10 mm amplitude. The force balance of the two Hooke elements and one Saint-Venant element interacting with each other determined the mathematical model description. The authors carried out the calculations using numerical and optimization methods.Results. As a result, the authors determined functions characterizing the change in the parameters of the Hooke and Saint-Venant elements from the rubber bushings’ deformation amplitude. Moreover, the authors calculated power characteristics in the form of dependences of the rubber bushing effort and also found quantitative indicators of the reliability of the experimental data approximation by the developed mathematical model.Discussion and conclusions. The analysis of the operating modes shows the possibility of the model application to describe the rubber bushing functioning in a stationary harmonic mode with small and medium strain amplitudes. The simulation results of the Hooke’s and Saint-Venant’s parameters reveals the theoretical prerequisites for the possibility of using the model to calculate the bushing force in an unsteady mode.The authors have read and approved the final manuscript. Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.



Author(s):  
Daoyong Wang ◽  
Wencan Zhang ◽  
Mu Chai ◽  
Xiaguang Zeng

To reduce the vibration and shock of powertrain in the process of engine key on/off and vehicle in situ shift, a novel semi-active hydraulic damping strut is developed. The purpose of this paper is to study and discuss the dynamic stiffness model of the semi-active hydraulic damping strut. In this study, the dynamic characteristics of semi-active hydraulic damping strut were analyzed based on MTS 831 test rig first. Then, the dynamic stiffness model of semi-active hydraulic damping strut was established based on 2 degrees of freedom vibration system. In this research, a linear, fractional derivative and friction model was used to represent the nonlinear rubber bushing characteristic; the Maxwell model was used to describe the semi-active hydraulic damping strut body model; and the parameters of rubber bushing and semi-active hydraulic damping strut body were identified. The dynamic stiffness values were calculated with solenoid valve energized and not energized at amplitudes of 1 mm and 4 mm, which were consistent with experimental results in low-frequency range. Furthermore, the simplified dynamic stiffness model of the semi-active hydraulic damping strut was discussed, which showed that bushing can be ignored in low-frequency range. Then, the influence of equivalent spring stiffness, damping constant, and rubber bushing stiffness on the stiffness and damping capacity of the semi-active hydraulic damping strut were analyzed. Finally, the prototype of the semi-active hydraulic damping strut was developed and designed based on the vehicle in situ shift and engine key on/off situations, and experiments of the vehicle with and without semi-active hydraulic damping strut were carried out to verify its function.



Author(s):  
Pingxin Wang ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Hailong Yu

Abstract The track is mainly composed of track shoes, track pins and rubber bushing elements. In order to suppress the transversal vibration of the upper track during the smooth running process of the tracked vehicle, it is necessary to study the important factors affecting the frequency characteristics of the kinematic chain and their interaction. Unlike the conventional chain drive system, the track in the natural state has a bending rigidity due to the action of the rubber bushing. Based on the dynamic theory of axially moving beam, the differential equation of transversal vibration of a beam element is established. The entire upper track is assumed to be a continuous multi-span axially moving Euler-Bernoulli beam with an axial tension. Based on the Transfer Matrix Method of Multibody System, the transfer equation is obtained. According to the boundary conditions, the natural frequency of the system is solved. The correctness of the beam model hypothesis is verified by experiments. The results show that the first-order natural frequency of the upper track increases with the increase of the tension and the decrease of the vehicle speed. Through frequency analysis, the main excitation source for the transversal vibration of the track is the polygon effect produced by the meshing of the track and the sprocket. This study provides a theoretical basis for the vibration analysis and stability control of the upper track on the tracked vehicle.



Sign in / Sign up

Export Citation Format

Share Document