A Structural Health Monitoring System for Composite Beams With Coupled Bending-Torsion

Author(s):  
Zeaid Hasan ◽  
Ghassan Atmeh

Structural health monitoring (SHM) is the process of damage identification in structural systems which have been an area of interest and a well-recognized field of technology in the past decade. Such systems involve the integration of smart materials, sensors and decision-making algorithms into the structure to detect damage, evaluate the structural integrity and predict the remaining life time. These systems have the potential to replace traditional non-destructive evaluation (NDE) of structures. This study focuses on presenting an automated structural health monitoring (SHM) system based on detecting shifts in natural frequencies of the structure. The damage detection technique is implemented on a cracked composite beam vibrating in coupled bending-torsion where the crack is assumed open. Modal analysis is conducted on the composite beam in order to predict the natural frequency and the associated mode shapes. Based on this analysis, a database of information related to the specific composite beam being analyzed such as layups and natural frequencies are stored. The natural frequency will be measured and compared to that database for damage detection. A finite element model is also presented and compared with the analytical results. It is observed that the variation of natural frequencies in the presence of a crack is affected by the crack ratio, crack location and fiber orientation. In particular, the variation pattern is different as the magnitude of bending-torsion coupling changes due to different fiber angles. A simple circuit containing a microcontroller is implemented to simulate the automated SHM concept. The microcontroller serves as the data storage device as well as the decision maker based on the instantaneous comparison between the healthy and the damaged structure. The proposed system may be implemented in many structural components such as aircraft frames and bridges. This SHM technology may help replace the current time-based maintenance scheme with a condition-based one. The condition-based maintenance scheme relies on the ability to monitor the condition of the system and supply information of damage detection to allow a corrective action to be taken.

2018 ◽  
Vol 148 ◽  
pp. 14004
Author(s):  
Vikas Arora

Stiffness-based structural health monitoring methods are widely used for detecting the damage in a structure. These stiffness-based structural health monitoring methods uses change in natural frequencies and modeshapes for damage detection. These methods are based on identifying the change in stiffness of the healthy and damage structure to predict the damage in the structure. These stiffness-based methods are not efficient for detecting a small damage in a structure as there is a negligible change in natural frequencies and modeshapes due to a small damage in a structure, however the damping characteristics of the structure are highly sensitive to the damage in a structure. In this paper, new damping-based damage detection procedure has been proposed. In the proposed procedure, the changes in damping matrix of the structure has been used to detect the damage in the structure. The proposed procedure is able (or can) to detect both the location of the damage and the extend of the damage in the structure. The proposed procedure of damping-based damage detection is a 2-step procedure. In the first step, damping matrices of both the healthy and damage structure are identified and in the second step, the identified damping matrices are used for damage detection. Numerical and experimental case studies are presented to demonstrate the effectiveness of the proposed procedure. The results have shown that the proposed damping-based damage detection procedure can be used for detecting damage in a structure with confidence.


Author(s):  
Byungseok Yoo ◽  
Darryll J. Pines ◽  
Ashish S. Purekar

Research interests in structural health monitoring have increased due to in-situ monitoring of structural components to detect damage. This can secure personal safety and reduce maintenance effort for mechanical systems. Conventional damage detection techniques known as nondestructive evaluation (NDE) have been conducted to detect and locate damaged area in structures. Ultrasonic testing, using ultrasonic transducers or electromagnetic acoustic transducers, is one of the most widespread NDE techniques, based on monitoring changes in acoustic impedance. Although the ultrasonic testing has advantages such as high sensitivity to discontinuities and evaluation accuracy, it requires testing surface accessibility, close location to the damaged area, and decent skill and training of technicians. In recent years, modal analysis techniques to capture changes of mode shapes and natural frequency of structures have been investigated. However, the technique is relatively insensitive to small amount of damage such as an initial crack which can rapidly grow in structures under cyclic loadings. In addition, structural health monitoring based on guided waves has become a preferred damage detection approach due to its quick examination of large area and simple inspection mechanisms. There are many techniques used to analyze sensor signals to bring out features related to damage. A phased array coupled with the guided wave approach has been introduced to effectively analyze complicated guided wave signals. Phased array theory as a directional filtering technique is usually used in antenna applications. By using phased array signal processing, virtually steering the array to find the largest response of source, the desired signal component can be enhanced while unwanted information is eliminated.


2018 ◽  
Vol 162 ◽  
pp. 04020
Author(s):  
Ali Al-Ghalib ◽  
Fouad Mohammad

The concrete is liable to damage due to various stresses which compensate its adequacy and safety. The estimation of remaining strength in reinforced concrete beams when subjected to increased loading action utilizing vibration parameters is investigated. For this reason, three beams are loaded statically close to failure in various increasing load steps and then repaired. The beams are all of same dimensions, but are different in strength and range of defects introduced to each sample. Following each loading step, the experimental modal testing is utilized to collect the vibration parameters (natural frequency, damping ratio and mode shapes) of each beam when tested under free support boundary conditions. The use of vibration parameters for the purpose of damage identification are known to be an elaborate and lengthy process. On the other hand, they are successful for the structural health monitoring given that they are able to provide global on-site automated continuous monitoring. The paper features post analysis procedures for experimental modal measurements of three concrete samples to obtain and correlate the basic modal parameters (natural frequency, modal damping and mode shapes). The results of the extracted modal parameters and their combination are exploited in this research as quantified identification parameters. This paper concludes that modal parameters are successful in determining the location and quantity of structural degradation, when holistic approach considered through a system.


Author(s):  
Zeaid Hasan ◽  
Fares Hasweh ◽  
Omar Abu Al-Nadi ◽  
Ghassan Atmeh

Structural health monitoring (SHM) is the process of implementing a damage identification strategy which can be utilized in several applications including aerospace, civil and mechanical engineering infrastructure. Damage is defined as changes to the material and/or geometric properties of these systems. These changes adversely affect the current or future performance of the system. In order to identify damage in a suitable and meaningful manner, the damaged state is compared with other usually undamaged states. This study focuses on a structural health monitoring (SHM) system based on detecting shifts in natural frequencies of the structure. This structural health monitoring system incorporates a low power wireless transmitter that sends a warning signal when damage is detected in a structure. The damage detection technique is implemented on composite structures which are widely used in many applications including aeronautical and aerospace. An automated damage detection system capable of providing information of damage locations based on the finite element analysis and able to compare damage events to other historical data is also proposed in this paper and initially implemented using a microcontroller chip. Moreover, a control methodology using piezoelectric fiber composites, such as active fiber composites (AFCs) and microfiber composites (MFCs), is included as part of the system for vibration suppression purposes. The advantages of using piezoelectric fiber composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. The proposed system may be implemented in many structural components such as aircraft frames and bridges. This SHM technology may help replace the current time-based maintenance scheme with a condition-based one. The condition-based maintenance scheme relies on the ability to monitor the condition of the system and supply information of damage detection to allow a corrective action to be taken.


2021 ◽  
Author(s):  
Sérgio Oliveira ◽  
André Alegre ◽  
Ezequiel Carvalho ◽  
Paulo Mendes ◽  
Jorge Proença

Abstract Over the past decade, monitoring systems for Seismic and Structural Health Monitoring (SSHM) have been assuming a greater role in the safety control of large concrete dams. In this article, the dynamic behavior of two large arch dams equipped with SSHM systems is analyzed, in order to present some of the main theoretical, computational and practical innovations developed recently for the improvement of large dams’ continuous dynamic monitoring using SSHM systems. The case studies are two large arch dams that have been under continuous dynamic monitoring over the last ten years: Cabril dam (132 m high), the highest dam in Portugal, and Cahora Bassa dam (170 m high), located in Mozambique, one of the highest dams in Africa. The Seismic and Structural Health Monitoring (SSHM) systems installed in both dams have similar schemes and were designed to continuously record acceleration time series in several locations at the upper part of the dam body and near the dam-foundation interface, using uniaxial and triaxial accelerometers. Specific software was developed for monitoring data analysis, including automatic modal identification, to obtain natural frequencies and mode shapes, for automatic detection of vibrations induced by seismic events, to be distinguished by those caused by other operational sources, and for comparison between results retrieved from measured vibrations and numerical results obtained from computational 3DFE models. The numerical analyses are carried out using a 3DFE program for linear and non-linear dynamic analysis of concrete dams, based on a solid-fluid coupled formulation to simulate the dam-reservoir-foundation system, considering the dam-water dynamic interaction and the propagation of pressure waves throughout the reservoir. The most significant experimental results from continuous dynamic monitoring are presented for Cabril dam and Cahora Bassa dam and compared with numerical results, with emphasis on the evolution of natural frequencies over time, on vibration mode shapes for various water levels, and, finally, on the measured accelerations during seismic events. Furthermore, the main results of non-linear seismic response simulations, considering joint movements and concrete damage, are also presented for both dams in order to assess their seismic performance, using an intensifying seismic accelerogram prepared for Endurance Time Analysis.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 515 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Huang ◽  
Ye Zhang ◽  
Yi Tian ◽  
Yu Zhao

In this paper, we present a vibration-based transmission tower structural health monitoring system consisting of two parts that identifies structural changes in towers. An accelerometer group realizes vibration response acquisition at different positions and reduces the risk of data loss by data compression technology. A solar cell provides the power supply. An analyser receives the data from the acceleration sensor group and calculates the transmission tower natural frequencies, and the change in the structure is determined based on natural frequencies. Then, the data are sent to the monitoring center. Furthermore, analysis of the vibration signal and the calculation method of natural frequencies are proposed. The response and natural frequencies of vibration at different wind speeds are analysed by time-domain signal, power spectral density (PSD), root mean square (RMS) and short-time Fouier transform (STFT). The natural frequency identification of the overall structure by the stochastic subspace identification (SSI) method reveals that the number of natural frequencies that can be calculated at different wind speeds is different, but the 2nd, 3rd and 4th natural frequencies can be excited. Finally, the system was tested on a 110 kV experimental transmission line. After 18 h of experimentation, the natural frequency of the overall structure of the transmission tower was determined before and after the tower leg was lifted. The results show that before and after the tower leg is lifted, the natural frequencies of each order exhibit obvious changes, and the differences in the average values can be used as the basis for judging the structural changes of the tower.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


Sign in / Sign up

Export Citation Format

Share Document