scholarly journals Response Effects Due to Polygonal Representation of Pores in Porous Media Thermal Models

Author(s):  
Kevin W. Irick ◽  
Nima Fathi

Abstract Physics models — such as thermal, structural, and fluid models — of engineering systems often incorporate a geometric aspect such that the model resembles the shape of the true system that it represents. However, the physical domain of the model is only a geometric representation of the true system, where geometric features are often simplified for convenience in model construction and to avoid added computational expense to running simulations. The process of simplifying or neglecting different aspects of the system geometry is sometimes referred to as “defeaturing.” Typically, modelers will choose to remove small features from the system model, such as fillets, holes, and fasteners. This simplification process can introduce inherent error into the computational model.Asimilar event can even take place when a computational mesh is generated, where smooth, curved features are represented by jagged, sharp geometries. The geometric representation and feature fidelity in a model can play a significant role in a corresponding simulation’s computational solution. In this paper, a porous material system — represented by a single porous unit cell — is considered. The system of interest is a two-dimensional square cell with a centered circular pore, ranging in porosity from 1% to 78%. However, the circular pore was represented geometrically by a series of regular polygons with number of sides ranging from 3 to 100. The system response quantity under investigation was the dimensionless effective thermal conductivity, k*, of the porous unit cell. The results show significant change in the resulting k* value depending on the number of polygon sides used to represent the circular pore. In order to mitigate the convolution of discretization error with this type of model form error, a series of five systematically refined meshes was used for each pore representation. Using the finite element method (FEM), the heat equation was solved numerically across the porous unit cell domain. Code verification was performed using the Method of Manufactured Solutions (MMS) to assess the order of accuracy of the implemented FEM. Likewise, solution verification was performed to estimate the numerical uncertainty due to discretization in the problem of interest. Specifically, a modern grid convergence index (GCI) approach was employed to estimate the numerical uncertainty on the systematically refined meshes. The results of the analyses presented in this paper illustrate the importance of understanding the effects of geometric representation in engineering models and can help to predict some model form error introduced by the model geometry.

2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Stephen L. Canfield ◽  
Reabetswe M. Nkhumise

This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.


Author(s):  
Aniruddha Choudhary ◽  
Ian T. Voyles ◽  
Christopher J. Roy ◽  
William L. Oberkampf ◽  
Mayuresh Patil

Our approach to the Sandia Verification and Validation Challenge Problem is to use probability bounds analysis (PBA) based on probabilistic representation for aleatory uncertainties and interval representation for (most) epistemic uncertainties. The nondeterministic model predictions thus take the form of p-boxes, or bounding cumulative distribution functions (CDFs) that contain all possible families of CDFs that could exist within the uncertainty bounds. The scarcity of experimental data provides little support for treatment of all uncertain inputs as purely aleatory uncertainties and also precludes significant calibration of the models. We instead seek to estimate the model form uncertainty at conditions where the experimental data are available, then extrapolate this uncertainty to conditions where no data exist. The modified area validation metric (MAVM) is employed to estimate the model form uncertainty which is important because the model involves significant simplifications (both geometric and physical nature) of the true system. The results of verification and validation processes are treated as additional interval-based uncertainties applied to the nondeterministic model predictions based on which the failure prediction is made. Based on the method employed, we estimate the probability of failure to be as large as 0.0034, concluding that the tanks are unsafe.


2006 ◽  
Vol 128 (4) ◽  
pp. 936-944 ◽  
Author(s):  
Sankaran Mahadevan ◽  
Ramesh Rebba

This paper proposes a methodology to estimate errors in computational models and to include them in reliability-based design optimization (RBDO). Various sources of uncertainties, errors, and approximations in model form selection and numerical solution are considered. The solution approximation error is quantified based on the model itself, using the Richardson extrapolation method. The model form error is quantified based on the comparison of model prediction with physical observations using an interpolated resampling approach. The error in reliability analysis is also quantified and included in the RBDO formulation. The proposed methods are illustrated through numerical examples.


Author(s):  
Kevin Irick ◽  
Nima Fathi

The evaluation of effective material properties in heterogeneous materials (e.g., composites or multicomponent structures) has direct relevance to a vast number of applications, including nuclear fuel assembly, electronic packaging, municipal solid waste, and others. The work described in this paper is devoted to the numerical verification assessment of the thermal behavior of porous materials obtained from thermal modeling and simulation. Two-dimensional, steady state analyses were conducted on unit cell nano-porous media models using the finite element method (FEM). The effective thermal conductivity of the structures was examined, encompassing a range of porosity. The geometries of the models were generated based on ordered cylindrical pores in six different porosities. The dimensionless effective thermal conductivity was compared in all simulated cases. In this investigation, the method of manufactured solutions (MMS) was used to perform code verification, and the grid convergence index (GCI) is employed to estimate discretization uncertainty (solution verification). The system response quantity (SRQ) under investigation is the dimensionless effective thermal conductivity across the unit cell. Code verification concludes an approximately second order accurate solver. It was found that the introduction of porosity to the material reduces effective thermal conductivity, as anticipated. This approach can be readily generalized to study a wide variety of porous solids from nano-structured materials to geological structures.


Author(s):  
Nihar Deodhar ◽  
Christopher Vermillion

This research presents a convergence analysis for an iterative framework for optimizing plant and controller parameters for active systems. The optimization strategy fuses expensive yet valuable experiments with less accurate yet cheaper simulations. The numerical model is improved at each iteration through a cumulative correction law, using an optimally designed set of experiments. The iterative framework reduces the feasible design space between iterations, ultimately yielding convergence to a small design space that contains the optimum. This paper presents the derivation of an asymptotic upper bound on the difference between the corrected numerical model and true system response. Furthermore, convergence of the numerical model to the true system response and convergence of the design space are demonstrated on an airborne wind energy (AWE) application.


JOM ◽  
2016 ◽  
Vol 68 (5) ◽  
pp. 1427-1445 ◽  
Author(s):  
Joseph E. Bishop ◽  
John M. Emery ◽  
Corbett C. Battaile ◽  
David J. Littlewood ◽  
Andrew J. Baines

Author(s):  
Ian G. R. Craig ◽  
Coleman D. Hoff ◽  
Paul J. Kristo ◽  
Mark L. Kimber

Abstract Numerical modeling of turbulent mixing is complicated not only by the natural complexity of the flow physics, but by the model sensitivity to the user specified conditions. When aiming to quantify the level of trust in a given model, a validation experiment is often performed to provide data against which confidence comparisons can be made, ultimately evaluating the adequacy of the model assumptions. In the nuclear community, a number of promising Generation IV reactor concepts have been proposed, each requiring high fidelity modeling capabilities to accurately assess safety related issues. The experiment described in this paper is intended to provide a much needed validation data set to assess the use of computational fluid dynamics (CFD) in a complex turbulent mixing scenario relevant to the prismatic very high temperature reactor (VHTR) concept. Over the course of the VHTR’s operation, the reactor’s graphite moderated hexagonal fuel blocks shrink from neutron damage, forming interstitial gaps between adjacent blocks. A significant percentage of the coolant can flow through these gaps, having a substantial impact on the thermal-hydraulic conditions in the core. An experimental facility is presented that uses air as a simulant fluid and includes a unit cell representation of the hexagonal blocks, which accounts for both the intended circular channels and secondary rectangular slot features induced by the bypass gaps. The outlet of the unit cell consists of a collated jet consisting of a central round jet surrounded by three slot jets at relative 120° angles to one another issuing into a stagnant domain. A preliminary test case is proposed in which the collated jet is set to an isothermal and iso-velocity condition. Constant temperature anemometry (CTA) and constant current anemometry (CCA) measurements serve to capture the velocity and temperature inlet quantities (IQs). Particle image velocimetry (PIV) measurements provide the appropriate system response quantities (SRQs), yielding insight into the mean and fluctuating components of the 2-D velocity field. Results are presented in the range of 0–8 diameters downstream of the inlet to the test section. The collated jet inlet region yields velocity profiles that are heavily influenced by opposing pressure gradients between the neighboring round and slot regions. As a result, the velocity peaks found in this area are neither in the centerline of the round jet nor that of the slot, but are towards the outer edge of each. With increasing downstream distance, the collated jet is found to exhibit a more classical round jet profile. The inlet region of the collated jet is thus of particular interest to future modeling efforts to more accurately depict the lower plenum behavior and transition to a self-similar profile downstream. Proper uncertainty quantification is also presented, and aids in assessing the integrity of the experimental results for future CFD validation.


Sign in / Sign up

Export Citation Format

Share Document