richardson extrapolation method
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 11 (21) ◽  
pp. 9879
Author(s):  
Wanjun Xu ◽  
Kang Li ◽  
Zhengyang Geng ◽  
Mingjie Zhang ◽  
Jiangang Yang

Nonuniform mesh is beneficial to reduce computational cost and improve the resolution of the interest area. In the paper, a cell-based adaptive mesh refinement (AMR) method was developed for bearing cavitation simulation. The bearing mesh can be optimized by local refinement and coarsening, allowing for a reasonable solution with special purpose. The AMR algorithm was constructed based on a quadtree data structure with a Z-order filling curve managing cells. The hybrids of interpolation schemes on hanging nodes were applied. A cell matching method was used to handle periodic boundary conditions. The difference schemes at the nonuniform mesh for the universal Reynolds equation were derived. Ausas’ cavitation algorithm was integrated into the AMR algorithm. The Richardson extrapolation method was employed as an a posteriori error estimation to guide the areas where they need to be refined. The cases of a journal bearing and a thrust bearing were studied. The results showed that the AMR method provided nearly the same accuracy results compared with the uniform mesh, while the number of mesh was reduced to 50–60% of the number of the uniform mesh. The computational efficiency was effectively improved. The AMR method is suggested to be a potential tool for bearing cavitation simulation.


2021 ◽  
Vol 63 ◽  
pp. 228-248
Author(s):  
Geraldine Tour ◽  
Nawdha Thakoor ◽  
Désiré Yannick Tangman

We propose a Legendre–Laguerre spectral approximation to price the European and double barrier options in the time-fractional framework. By choosing an appropriate basis function, the spectral discretization is used for the approximation of the spatial derivatives of the time-fractional Black–Scholes equation. For the time discretization, we consider the popular \(L1\) finite difference approximation, which converges with order \(\mathcal{O}((\Delta \tau)^{2-\alpha})\) for functions which are twice continuously differentiable. However, when using the \(L1\) scheme for problems with nonsmooth initial data, only the first-order accuracy in time is achieved. This low-order accuracy is also observed when solving the time-fractional Black–Scholes European and barrier option pricing problems for which the payoffs are all nonsmooth. To increase the temporal convergence rate, we therefore consider a Richardson extrapolation method, which when combined with the spectral approximation in space, exhibits higher order convergence such that high accuracies over the whole discretization grid are obtained. Compared with the traditional finite difference scheme, numerical examples clearly indicate that the spectral approximation converges exponentially over a small number of grid points. Also, as demonstrated, such high accuracies can be achieved in much fewer time steps using the extrapolation approach.   doi:10.1017/S1446181121000286  


2021 ◽  
pp. 1-21
Author(s):  
GERALDINE TOUR ◽  
NAWDHA THAKOOR ◽  
DÉSIRÉ YANNICK TANGMAN

Abstract We propose a Legendre–Laguerre spectral approximation to price the European and double barrier options in the time-fractional framework. By choosing an appropriate basis function, the spectral discretization is used for the approximation of the spatial derivatives of the time-fractional Black–Scholes equation. For the time discretization, we consider the popular $L1$ finite difference approximation, which converges with order $\mathcal {O}((\Delta \tau )^{2-\alpha })$ for functions which are twice continuously differentiable. However, when using the $L1$ scheme for problems with nonsmooth initial data, only the first-order accuracy in time is achieved. This low-order accuracy is also observed when solving the time-fractional Black–Scholes European and barrier option pricing problems for which the payoffs are all nonsmooth. To increase the temporal convergence rate, we therefore consider a Richardson extrapolation method, which when combined with the spectral approximation in space, exhibits higher order convergence such that high accuracies over the whole discretization grid are obtained. Compared with the traditional finite difference scheme, numerical examples clearly indicate that the spectral approximation converges exponentially over a small number of grid points. Also, as demonstrated, such high accuracies can be achieved in much fewer time steps using the extrapolation approach.


2021 ◽  
Vol 9 (5) ◽  
pp. 452
Author(s):  
Adham Bekhit ◽  
Florin Popescu

In the present study, Computational Fluid Dynamics (CFD) is used to investigate the roll decay of the benchmark surface combatant DTMB-5512 ship model appended with bilge keels, sailing in calm water at different speeds (Fr = 0.0, 0.138, 0.2, 0.28 and 0.41) and with different initial roll angles. The numerical simulations are carried out using the viscous flow solver ISIS-CFD of the FINETM/Marine software provided by NUMECA. The solver uses the finite volume method to build the spatial discretization of the transport equation to solve the unsteady Reynolds-Averaged Navier–Stokes equations. Two-phase flow approach is applied to model the air–water interface, where the free surface is captured using the volume of fluid method. The closure to turbulence is achieved by making use of the blended Menter shear stress transport and the explicit algebraic Reynolds stress models. First, a systematic validation against the experimental data at medium speed and initial roll angle of 10° are performed; then, the effect of the initial roll angle and ship speed is later studied. Numerical errors and uncertainties are assessed using grid and time step convergence study based on Richardson Extrapolation method. A special focus on the flow in the vicinity of the bilge keels during the simulation is also investigated and presented in the form of velocity contours and vortical structure formations. The resemblance between the CFD results and experimental data for roll motion and flow characteristics are within a satisfactory congruence; however, some discrepancies are recorded for the over predicted roll amplitudes in the second and, sometimes, the third roll cycle, which appeared mostly in the cases with high initial roll angles.


2021 ◽  
Vol 101 (1) ◽  
pp. 50-64
Author(s):  
K.H.F. Jwamer ◽  
◽  
Sh.Sh. Ahmed ◽  
D.Kh. Abdullah ◽  
◽  
...  

In this paper, we suggest two new methods for approximating the solution to the Volterra integro-fractional differential equation (VIFDEs), based on the normal quadratic spline function and the second method used the Richardson Extrapolation technique the usage of discrete collocation points. The fractional derivatives are regarded in the Caputo perception. A new theorem for the Richardson Extrapolation points for using the finite difference approximation of Caputo derivative is introduced with their proof. New techniques using the first derivative at the initial point such that obtained by follow two cases the first using trapezoidal rule and the second using the first step of linear spline function using the Richardson Extrapolation method. Specifically, the program is given in examples analysis in Matlab (R2018b). Numerical examples are available to illuminate the productivity and trustworthiness of the methods, as well as, follow the Clenshaw Curtis rule for calculating the required integrals for those equations.


Author(s):  
И.В. Пригорный ◽  
А.А. Панин ◽  
Д.В. Лукьяненко

В работе демонстрируется, как метод апостериорной оценки порядка точности разностной схемы по Ричардсону позволяет сделать вывод о некорректности постановки (в смысле отсутствия решения) решаемой численно начально-краевой задачи для уравнения в частных производных. Это актуально в ситуации, когда аналитическое доказательство некорректности постановки ещё не получено или принципиально невозможно. The paper demonstrates how the method of a posteriori estimation of the order of accuracy for the difference scheme according to the Richardson extrapolation method allows one to conclude that the formulation of the numerically solved initial-boundary value problem for a partial differential equation is ill-posed (in the sense of the absence of a solution). This is important in a situation when the ill-posedness of the formulation is not analytically proved yet or cannot be proved in principle.


Sign in / Sign up

Export Citation Format

Share Document