Frequency Dependent Dynamic Properties of Tilting Pad Journal Bearings: Experimental Results and Uncertainty Analysis

Author(s):  
Waldemar Dmochowski ◽  
Jacek Dmochowski

The paper presents experimentally obtained TPJB response to multifrequency excitation and its comparison with theoretically obtained data. Uncertainty considerations for the results obtained using the power spectral density method are also presented. It has been concluded that inertia forces and pivot flexibility effects are behind the variations of dynamic coefficients with frequency of excitation.

2021 ◽  
pp. 1-24
Author(s):  
Gudeta Berhanu Benti ◽  
David Jose Rondon ◽  
Rolf Gustavsson ◽  
Jan-Olov Aidanpää

Abstract In this paper, the dynamics of tilting pad journal bearings with four and eight pads are studied and compared experimentally and numerically. The experiments are performed on a rigid vertical rotor supported by two identical bearings. Two sets of experiments are carried out under similar test setup. One set is performed on a rigid rotor with two four-pad bearings, while the other is on a rigid rotor with two eight-pad bearings. The dynamic properties of the two bearing types are compared with each other by studying the unbalance response of the system at different rotor speeds. Numerically, the test rig is modeled as a rigid rotor and the bearing coefficients are calculated based on Navier-Stokes equation. A nonlinear bearing model is developed and used in the steady state response simulation. The measured and simulated displacement and force orbits show similar patterns for both bearing types. Compared to the measurement, the simulated mean value and range (peak-to-peak amplitude) of the bearing force deviate with a maximum of 16 % and 38 %, respectively. It is concluded that, unlike the eight-pad TPJB, the four-pad TPJB excite the system at the third and fifth-order frequencies, which are due to the number of pads, and the amplitudes of these frequencies increase with the rotor speed.


2006 ◽  
Vol 129 (3) ◽  
pp. 865-869 ◽  
Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJBs) dominate as rotor supports in high-speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Author(s):  
Riccardo Ferraro ◽  
Alice Innocenti ◽  
Mirko Libraschi ◽  
Michele Barsanti ◽  
Enrico Ciulli ◽  
...  

Abstract Tilting pad journal bearings (TPJBs) are crucial elements in turbomachinery applications providing stiffness and damping characteristics that determine rotor system dynamic behavior. Hence, a correct design and an accurate dynamic properties prediction is fundamental for the successful industrial operation of rotating machinery. Current design trends in turbomachinery aiming at higher efficiency and power through weight optimization and higher operating speeds determine the development of large flexible rotors that are particularly important from the rotordynamic standpoint. The dynamic feasibility of this type of machine relies on bearing stiffness and damping characteristics that must be predicted with a certain level of confidence in order to increase the accuracy of the expected rotordynamic behaviour and avoid unpredicted vibration issues when rotors are operated. Furthermore, large centrifugal compressors commonly used in Liquified Natural Gas (LNG) applications make the bearings operate at very high peripheral speed where the transition from laminar to turbulent regime occurs, increasing the necessity of predictions accuracy. In this paper a test campaign on different large TPJB solutions operating in turbulent lubrication regime has been performed on a dedicated test rig designed for investigations on large size high-performance oil bearings. In the present work both static performance and dynamic identification of the tested TPJB solutions are presented and compared to numerical model predictions. The results of an uncertainty quantification, performed to validate the experimental results, are also shown.


2012 ◽  
Vol 157-158 ◽  
pp. 589-594
Author(s):  
Zhen Shan Zhang ◽  
Xu Dong Dai

Considering the coupling moving of shaft and pads, a theoretical model for calculating the complete dynamic coefficients (CDCs) of tilting-pad journal bearing (TPJB) is described in this paper. The model includes the influence of fluid film temperature. Based on this model, the effect of fluid film temperature on journal equilibrium position, pads inclinations, and complete dynamic coefficients is investigated for given load cases. The numerical results indicate that the effect of temperature is not neglected for the dynamic properties of TPJB. The solution will provide useful tool for precise prediction of dynamic behavior of the rotor systems supported by TPJB.


Author(s):  
Waldemar Dmochowski

Tilting-pad journal bearings (TPJB) dominate as rotor supports in high speed rotating machinery. The paper analyzes frequency effects on the TPJB’s stiffness and damping characteristics based on experimental and theoretical investigations. The experimental investigation has been carried out on a five pad tilting-pad journal bearing of 98 mm in diameter. Time domain and multifrequency excitation has been used to evaluate the dynamic coefficients. The calculated results have been obtained from a three-dimensional computer model of TPJB, which accounts for thermal effects, turbulent oil flow, and elastic effects, including that of pad flexibility. The analyzes of the TPJB’s stiffness and damping properties showed that the frequency effects on the bearing dynamic properties depend on the operating conditions and bearing design. It has been concluded that the pad inertia and pivot flexibility are behind the variations of the stiffness and damping properties with frequency of excitation.


Sign in / Sign up

Export Citation Format

Share Document