Research on the Complete Dynamic Model of Tilting-Pad Journal Bearings Including Fluid Film Temperature Effect

2012 ◽  
Vol 157-158 ◽  
pp. 589-594
Author(s):  
Zhen Shan Zhang ◽  
Xu Dong Dai

Considering the coupling moving of shaft and pads, a theoretical model for calculating the complete dynamic coefficients (CDCs) of tilting-pad journal bearing (TPJB) is described in this paper. The model includes the influence of fluid film temperature. Based on this model, the effect of fluid film temperature on journal equilibrium position, pads inclinations, and complete dynamic coefficients is investigated for given load cases. The numerical results indicate that the effect of temperature is not neglected for the dynamic properties of TPJB. The solution will provide useful tool for precise prediction of dynamic behavior of the rotor systems supported by TPJB.

Author(s):  
Rafael O. Ruiz ◽  
Sergio E. Diaz

It has been identified that small variations in the pad clearance and preload of a Tilting Pad Journal Bearing lead to important variations in their dynamic coefficients. Although this variation trend is already identified, a more robust statistical analysis is required in order to identify more general tendencies and quantify it. This work presents a framework that helps to identify the relation between the manufacturing tolerance of the bearing (reflected in the pad clearance and preload) and the expected variations on the dynamic coefficients. The procedure underlies the adoption of a surrogate model (based on Kriging interpolation) trained by any deterministic model available to predict dynamic coefficients. The pad clearance and preload are considered uncertain parameters defined by a proper probability density function. All statistical quantities are obtained using stochastic simulation, specifically adopting a Monte Carlo simulation employing the surrogate model. The framework is illustrated through the study of a five pad bearing.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


Author(s):  
Steven Chatterton ◽  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Phuoc Vinh Dang

The current design trend of rotating machines like turbo-generators, compressors, turbines, and pumps is focused on obtaining both high dynamic performances and high versatility of machines in different operating conditions. The first target is nowadays achieved by equipping machines with tilting pad journal bearings. For the second target, State-of-the-Art researches are focused on the development of active systems able to adapt the dynamic behavior of the machine to the external environment and new operating conditions. Typical causes of large vibration in rotating machines are faults, residual unbalance, resonance condition and instabilities. Aiming at vibration reduction, in recent years many studies are carried out to investigate different solutions; one of them is based on active tilting pad journal bearing. In this paper, the authors investigate, by simulations, the reduction of shaft vibration by controlling the motion of the pads of a tilting pad journal bearing. The basic idea is to balance the exciting force on the shaft with a suitable resulting force of the oil-film pressure distribution. In particular, a sliding mode controller has been considered and both angular rotation of the pads about the pivot and the radial motion of the pivot have been analyzed. Sliding mode control guarantees high robustness of the control system in real applications that can be characterized by a strong non-linear behavior. In the paper a general consideration about the bearing, the actuating methods and the control system have been provided. A numerical analysis of large size rotor equipped with active pads has been carried out in order to verify the effectiveness of the system in several conditions, even during the most critical operating phase, i.e. the lateral critical speed.


Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


1992 ◽  
Vol 114 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Michel Fillon ◽  
Jean-Claude Bligoud ◽  
Jean Freˆne

Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.


1983 ◽  
Vol 26 (2) ◽  
pp. 222-227 ◽  
Author(s):  
J. K. Parsell ◽  
P. E. Allaire ◽  
L. E. Barrett

Sign in / Sign up

Export Citation Format

Share Document