scholarly journals Modeling of Liquid Droplet Impingement onto Ti-6Al-4V Substrate

Author(s):  
Mason Marzbali ◽  
Ali Dolatabadi
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Hirotoshi Sasaki ◽  
Yuka Iga

This study explains why the deep erosion pits are formed in liquid droplet impingement erosion even though the droplets uniformly impinge on the entire material surface. Liquid droplet impingement erosion occurs in fluid machinery on which droplets impinge at high speed. In the process of erosion, the material surface becomes completely roughened by erosion pits. In addition, most material surface is not completely smooth and has some degree of initial roughness from manufacturing and processing and so on. In this study, to consider the influence of the roughness on the material surface under droplet impingement, a numerical analysis of droplets impinging on the material surface with a single wedge and a single bump was conducted with changing offsets between the droplet impingement centers and the roughness centers on each a wedge bottom and a bump top. As results, two mechanisms are predicted from the present numerical results: the erosion rate accelerates and transitions from the incubation stage to the acceleration stage once roughness occurs on the material surface; the other is that deep erosion pits are formed even in the case of liquid droplets impinging uniformly on the entire material surface.


Wear ◽  
2019 ◽  
Vol 432-433 ◽  
pp. 202955 ◽  
Author(s):  
K. Fujisawa ◽  
M. Ohki ◽  
N. Fujisawa

Author(s):  
Rui Li ◽  
Hisashi Ninokata ◽  
Michitsugu Mori

Liquid droplet impingement (LDI) erosion could be regarded to be one of the major causes of unexpected troubles occasionally occurred in the inner bent pipe surface. Evaluating the LDI erosion is an important topic of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plants safety. In order to investigate the effect of various parameters, such as droplet diameter, droplet velocity and injected droplet number, on the erosion rate induced by LDI, droplet impingement under different conditions are conducted numerically by a two-phase computational approach. Considering the carrier turbulence kinetic energy attenuation due to the involved droplets, numerical simulations have been performed by using two-way vapor-droplet coupled system. This computational fluid model is built up by incompressible Reynolds Averaged Navier-Stoke equations using standard k-ε model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach, a general LDI erosion prediction procedure for bent pipe geometry has been performed to supplement an available CFD code. A correlation for the erosion rate in terms of droplet velocity, diameter and volume fraction is purposed for the engineers’ maintenance reference. Based on our computational results, comparison with an available accident data was made to prove that our methodology could be an appropriate way to simulate and predict the bent pipe wall thinning phenomena.


Author(s):  
Ryo Morita ◽  
Fumio Inada ◽  
Michiya Sakai ◽  
Shin-ichi Matsuura ◽  
Shigenobu Onishi ◽  
...  

For seismic safety evaluation of piping system with local thinning surface by liquid droplet impingement erosion (LDI), hybrid seismic tests were conducted to the piping with a locally-thinned elbow. In this paper, a method for predicting the thinning shape by LDI on the elbow is developed. To determine the thinning shape by LDI, droplet behavior at the elbow is calculated for various flow conditions and geometries. With the calculation of the collision point and velocity for each droplet, collision frequency and average collision velocity on the elbow are estimated. Then, the thinning shape on the elbow is determined with the relationship between the flow conditions and thinning rate. Finally, the evaluated thinning shape is compared with an actual LDI case for the validation of the method.


Sign in / Sign up

Export Citation Format

Share Document