Molecular beam epitaxy growth of thin films of SnS2 and SnSe2 on cleaved mica and the basal planes of single‐crystal layered semiconductors: Reflection high‐energy electron diffraction, low‐energy electron diffraction, photoemission, and scanning tunneling microscopy/atomic force microscopy characterization

1995 ◽  
Vol 13 (3) ◽  
pp. 1761-1767 ◽  
Author(s):  
R. Schlaf ◽  
D. Louder ◽  
O. Lang ◽  
C. Pettenkofer ◽  
W. Jaegermann ◽  
...  
2011 ◽  
Vol 324 ◽  
pp. 109-112
Author(s):  
Mohammad El-Jawad ◽  
Bruno Gilles ◽  
Frederic Maillard

In this study, we investigated the role of oxygen in the faceting of the W(111) surface at temperatures close to T = 2000°C. For that purpose, we characterized the W(111) surface before and after the annealing step by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy (AES). It is found that W(111) undergoes a massive reconstruction to form three sided pyramids of nanometer dimensions with mainly {211} planes as facet sides. Interestingly, the facetted W(111) surface is deprived from oxygen. We then show how the facetted W(111) surface can be used as a template to deposit platinum by molecular beam epitaxy.


2014 ◽  
Vol 10 ◽  
pp. 2055-2064 ◽  
Author(s):  
Stefan Gärtner ◽  
Benjamin Fiedler ◽  
Oliver Bauer ◽  
Antonela Marele ◽  
Moritz M Sokolowski

We have investigated the adsorption of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) on the clean and on the oxygen pre-covered Cu(100) surface [referred to as (√2 × 2√2)R45° – 2O/Cu(100)] by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Our results confirm the (4√2 × 5√2)R45° superstructure of PTCDA/Cu(100) reported by A. Schmidt et al. [J. Phys. Chem. 1995, 99,11770–11779]. However, contrary to Schmidt et al., we have no indication for a dissociation of the PTCDA upon adsorption, and we propose a detailed structure model with two intact PTCDA molecules within the unit cell. Domains of high lateral order are obtained, if the deposition is performed at 400 K. For deposition at room temperature, a significant density of nucleation defects is found pointing to a strong interaction of PTCDA with Cu(100). Quite differently, after preadsorption of oxygen and formation of the (√2 × 2√2)R45° – 2O/Cu(100) superstructure on Cu(100), PTCDA forms an incommensurate monolayer with a structure that corresponds well to that of PTCDA bulk lattice planes.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Costel Constantin ◽  
Abhijit Chinchore ◽  
Arthur R. Smith

ABSTRACTThe combination of the molecular beam epitaxy growth method with the in-situ reflection high energy electron diffraction measurements currently offers unprecedented control of crystalline growth materials. We present here a stoichiometric study of MnxSc(1-x) [x = 0, 0.03, 0.05, 0.15, 0.25, 0.35, and 0.50] thin films grown on MgO(001) substrates with this growth method. Reflection high energy electron diffraction and atomic force microscopy measurements reveal alloy behavior for all of our samples. In addition, we found that samples Mn0.10Sc0.90 and Mn0.50Sc0.50 display surface self-assembled nanowires with a length/width ratio of ~ 800 – 2000.


Sign in / Sign up

Export Citation Format

Share Document