Investigations of dry etching in AlGaInP/GaInP using CCl2F2/Ar reactive ion etching and Ar ion beam etching

Author(s):  
J. Hommel
Author(s):  
Ron Anderson

For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.


Author(s):  
R. R. Cerchiara ◽  
H. A. Cook ◽  
P. E. Fischione ◽  
J. J. Gronsky ◽  
J. M. Matesa ◽  
...  

Abstract The SiLK resins, composed of aromatic hydrocarbons, are a family of highly cross-linked thermoset polymers with isotropic dielectric properties. Patterning of SiLK for high aspect ratio copper interconnects has depended on reactive ion etching with oxygen/nitrogen gas mixtures. Reactive ion etching is therefore also accomplished with reducing plasmas such as nitrogen/hydrogen. An additional plasma cleaning step can be inserted after the reactive ion etching (RIE) step, so that any residual contamination is removed prior to imaging or final sputter coating. Automated sample preparation of microelectronic materials containing high and low-k dielectrics for FESEM is accomplished in this article by combining these techniques: plasma cleaning, ion beam etching, and reactive ion etching. A single RIE chemistry was effective in etching both dielectrics as well as delineating the other phases present.


1984 ◽  
Vol 38 ◽  
Author(s):  
Ch. Steinbruchel ◽  
H. W. Lehmann ◽  
K. Frick

AbstractReactive sputter etching of SiO2 with CHF3-O2 plasmas has been investigated in a parallel plate reactor by combining etch rate measurements with concurrent determination of ion densities (using a Langmuir probe) and the composition of neutral plasma species (using a mass spectrometer). Etch rates are found to follow the ion density and to be fairly independent of the plasma chemistry under most experimental conditions. Moreover, a comparison of reactive sputter etching and reactive ion beam etching of SiO2 with CHF3 and CF4 shows that etch yields per incoming ion are essentially independent of the flux of neutral radicals to the substrate. This strongly suggests as the dominant etch mechanism for SiO2 direct reactive ion etching, where ions themselves are the main reactants in the etch reaction. Measured values of etch yields are consistent with this picture.


1994 ◽  
Vol 28 (1-3) ◽  
pp. 383-386 ◽  
Author(s):  
K. Ketata ◽  
S. Koumetz ◽  
O. Latry ◽  
M. Ketata ◽  
R. Debrie

1983 ◽  
Vol 30 (11) ◽  
pp. 1613-1614
Author(s):  
S.J. Fonash ◽  
R. Singh ◽  
A. Climent ◽  
A. Rohatgi ◽  
P.R. Choudhury ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document