Electron beam induced current investigations of active electrical defects in silicon due to reactive ion etching and reactive ion beam etching processes

1994 ◽  
Vol 23 (4) ◽  
pp. 363-367 ◽  
Author(s):  
G. Jäger-Waldau ◽  
H. -U. Habermeier ◽  
G. Zwicker ◽  
E. Bucher
1996 ◽  
Vol 51-52 ◽  
pp. 359-366
Author(s):  
Hary Kirk ◽  
Zbigniew J. Radzimski ◽  
A. Romanowski ◽  
George A. Rozgonyi

Author(s):  
Ron Anderson

For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.


Author(s):  
R. R. Cerchiara ◽  
H. A. Cook ◽  
P. E. Fischione ◽  
J. J. Gronsky ◽  
J. M. Matesa ◽  
...  

Abstract The SiLK resins, composed of aromatic hydrocarbons, are a family of highly cross-linked thermoset polymers with isotropic dielectric properties. Patterning of SiLK for high aspect ratio copper interconnects has depended on reactive ion etching with oxygen/nitrogen gas mixtures. Reactive ion etching is therefore also accomplished with reducing plasmas such as nitrogen/hydrogen. An additional plasma cleaning step can be inserted after the reactive ion etching (RIE) step, so that any residual contamination is removed prior to imaging or final sputter coating. Automated sample preparation of microelectronic materials containing high and low-k dielectrics for FESEM is accomplished in this article by combining these techniques: plasma cleaning, ion beam etching, and reactive ion etching. A single RIE chemistry was effective in etching both dielectrics as well as delineating the other phases present.


Author(s):  
Frank Altmann ◽  
Jan Schischka ◽  
Vinh Van Ngo ◽  
Stacey Stone ◽  
Laurens F. Tz. Kwakman ◽  
...  

Abstract A novel analytical method applying combined electron beam induced current (EBIC) imaging based on scanning electron microscopy (SEM) and focused ion beam (FIB) cross sectioning in a SEM/FIB dualbeam system is presented. The method is demonstrated in several case studies for process characterization and failure analysis of thin film technology based Solar cells, including Silicon (CSG), Cadmium Telluride (CdTe) and Copper Indium Selenide (CIS) absorbers. While existing techniques such as electro-, photoluminescence spectroscopy and lock-in thermography are able to locate the larger, electrically active defects reasonably fast on a large area, the FIB-SEM EBIC system is uniquely capable of detecting sub-micron, sub-surface defects and of analysing these defects in the same system. In combination with a FIB, the localized region of interest can be easily cross sectioned and additional EBIC analysis can be applied for a three dimensional analysis of the p/n junction.


Sign in / Sign up

Export Citation Format

Share Document