Satellite-data-based study of seasonal and spatial variations of water temperature and water quality parameters in Lake Ladoga

2007 ◽  
Vol 1 (1) ◽  
pp. 011508 ◽  
Author(s):  
Anton Korosov
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
JianRong Lu ◽  
Kui Yan ◽  
Jin Liu ◽  
...  

In order to solve the problems of high labor cost, long detection period, and low degree of information in current water environment monitoring, this paper proposes a lake water environment monitoring system based on LoRa and Internet of Things technology. The system realizes remote collection, data storage, dynamic monitoring, and pollution alarm for the distributed deployment of multisensor node information (water temperature, pH, turbidity, conductivity, and other water quality parameters). Moreover, the system uses STM32L151C8T6 microprocessor and multiple types of water quality sensors to collect water quality parameters in real time, and the data is packaged and sent to the LoRa gateway remotely by LoRa technology. Then, the gateway completes the bridging of LoRa link to IP link and forwards the water quality information to the Alibaba Cloud server. Finally, end users can realize the water quality control of monitored water area by monitoring management platform. The experimental results show that the system has a good performance in terms of real-time data acquisition accuracy, data transmission reliability, and pollution alarm success rate. The average relative errors of water temperature, pH, turbidity, and conductivity are 0.31%, 0.28%, 3.96%, and 0.71%, respectively. In addition, the signal reception strength of the system within 2 km is better than -81 dBm, and the average packet loss rate is only 94%. In short, the system’s high accuracy, high reliability, and long distance characteristics meet the needs of large area water quality monitoring.


2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


2021 ◽  
Author(s):  
Liqing Li ◽  
Xinghong Chen ◽  
Meiyi Zhang ◽  
Weijun Zhang ◽  
Dongsheng Wang ◽  
...  

Abstract Baiyangdian Lake (BYD), a large shallow lake in North China, has complex water landscape patterns that are underlies spatial variations in water quality. In this study, we collected 61 water samples from three water landscapes (reed littoral zones, fish ponds and open water) and analyzed them for water quality parameters, such as dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP). Water landscape distribution (determined using remote sensing imagery) was then used to assess correlations between water quality parameters and water landscape proportion in differently scaled buffer zones. There was substantial variation across all subareas, with TN and TP concentrations ranging from 0.90–4.10 mg/L and 0.06–0.18 mg/L, respectively. Spatial variations in water quality were mainly caused by water landscape distribution and external nutrient inputs. There were negative correlations between DOC, TN, and TP concentrations and the area proportion of reed littoral zones in the 300 and 500 m buffers. In contrast, DOC, TN and TP concentrations were significantly positively correlated with the area proportion of fish ponds in the 100 m buffer. Furthermore, compared with reed littoral zones, a lower nitrogen to phosphorus ratio and a higher proportion of dissolved organic nitrogen and tyrosine-like proteins were found in fish ponds. These effects were mainly attributed to development of internal sediment loadings due to nutrient exchange between sediment and overlying water. Therefore, dredging-based sediment removal from fish ponds should be considered to suppress internal phosphorus loading and accelerate recovery of the BYD ecosystem.


2021 ◽  
Vol 07 (08) ◽  
Author(s):  
Vikas Jain ◽  

The manuscript herewith presents the assessment of water quality parameters in the samples drawn in year 2014-15 from Akshar Vihar pond, located centrally in district Bareilly (U.P.), India. Analysis of check parameters chosen, was performed by employing standard procedures laid down in APHA. The minimum to maximum values recorded in each month of the experimental year for pH, total hardness, DO, BOD, COD, calcium and magnesium were 7.2-8.8, 380 - 486mg/L, 4.2-10.6 mg/L, 1.0-1.6 mg/L, 3.8-8.4 mg/L, 52.97-74.84 mg/L and 56.74-72.98 mg/L respectively. Significant correlation was observed for COD with pH (0.816), carbonate (0.875) and bicarbonate (0.927); that of total hardness with magnesium (0.954) as well as of DO inversely with water temperature (-0.821).


2014 ◽  
Author(s):  
Christiana Papoutsa ◽  
Adrianos Retalis ◽  
Leonidas Toulios ◽  
Diofantos G. Hadjimitsis

Zoosymposia ◽  
2016 ◽  
Vol 10 (1) ◽  
pp. 85-90
Author(s):  
BABATUNDE AMUSAN ◽  
SYLVESTER OGBOGU

The species composition and abundance of caddisflies in association with some water quality parameters (pH, water temperature and conductivity) in Opa Stream in Ile-Ife, Nigeria were investigated during October 2009–August 2010. One hundred and ninety adult caddisflies collected from the stream represent six species in six genera and three families. Hydropsychidae had three species, which is more than were found in other families. The caddisflies showed a relative mean abundance of 62% and 38.9% in the wet and dry seasons, respectively. Caddisfly abundance was positively correlated with pH and conductivity but there was a negative relationship between water temperature and the abundance of caddisflies in the stream.


Sign in / Sign up

Export Citation Format

Share Document