scholarly journals Performance estimation of the state-of-the-art convolution neural networks for thermal images-based gender classification system

2020 ◽  
Vol 29 (06) ◽  
Author(s):  
Muhammad Ali Farooq ◽  
Hossein Javidnia ◽  
Peter Corcoran
2020 ◽  
Author(s):  
Yuyao Yang ◽  
Shuangjia Zheng ◽  
Shimin Su ◽  
Jun Xu ◽  
Hongming Chen

Fragment based drug design represents a promising drug discovery paradigm complimentary to the traditional HTS based lead generation strategy. How to link fragment structures to increase compound affinity is remaining a challenge task in this paradigm. Hereby a novel deep generative model (AutoLinker) for linking fragments is developed with the potential for applying in the fragment-based lead generation scenario. The state-of-the-art transformer architecture was employed to learn the linker grammar and generate novel linker. Our results show that, given starting fragments and user customized linker constraints, our AutoLinker model can design abundant drug-like molecules fulfilling these constraints and its performance was superior to other reference models. Moreover, several examples were showcased that AutoLinker can be useful tools for carrying out drug design tasks such as fragment linking, lead optimization and scaffold hopping.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongwei Luo ◽  
Yijie Shen ◽  
Feng Lin ◽  
Guoai Xu

Speaker verification system has gained great popularity in recent years, especially with the development of deep neural networks and Internet of Things. However, the security of speaker verification system based on deep neural networks has not been well investigated. In this paper, we propose an attack to spoof the state-of-the-art speaker verification system based on generalized end-to-end (GE2E) loss function for misclassifying illegal users into the authentic user. Specifically, we design a novel loss function to deploy a generator for generating effective adversarial examples with slight perturbation and then spoof the system with these adversarial examples to achieve our goals. The success rate of our attack can reach 82% when cosine similarity is adopted to deploy the deep-learning-based speaker verification system. Beyond that, our experiments also reported the signal-to-noise ratio at 76 dB, which proves that our attack has higher imperceptibility than previous works. In summary, the results show that our attack not only can spoof the state-of-the-art neural-network-based speaker verification system but also more importantly has the ability to hide from human hearing or machine discrimination.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Md Zahangir Alom ◽  
Paheding Sidike ◽  
Mahmudul Hasan ◽  
Tarek M. Taha ◽  
Vijayan K. Asari

In spite of advances in object recognition technology, handwritten Bangla character recognition (HBCR) remains largely unsolved due to the presence of many ambiguous handwritten characters and excessively cursive Bangla handwritings. Even many advanced existing methods do not lead to satisfactory performance in practice that related to HBCR. In this paper, a set of the state-of-the-art deep convolutional neural networks (DCNNs) is discussed and their performance on the application of HBCR is systematically evaluated. The main advantage of DCNN approaches is that they can extract discriminative features from raw data and represent them with a high degree of invariance to object distortions. The experimental results show the superior performance of DCNN models compared with the other popular object recognition approaches, which implies DCNN can be a good candidate for building an automatic HBCR system for practical applications.


2020 ◽  
Author(s):  
Alisson Hayasi da Costa ◽  
Renato Augusto C. dos Santos ◽  
Ricardo Cerri

AbstractPIWI-Interacting RNAs (piRNAs) form an important class of non-coding RNAs that play a key role in the genome integrity through the silencing of transposable elements. However, despite their importance and the large application of deep learning in computational biology for classification tasks, there are few studies of deep learning and neural networks for piRNAs prediction. Therefore, this paper presents an investigation on deep feedforward networks models for classification of transposon-derived piRNAs. We analyze and compare the results of the neural networks in different hyperparameters choices, such as number of layers, activation functions and optimizers, clarifying the advantages and disadvantages of each configuration. From this analysis, we propose a model for human piRNAs classification and compare our method with the state-of-the-art deep neural network for piRNA prediction in the literature and also traditional machine learning algorithms, such as Support Vector Machines and Random Forests, showing that our model has achieved a great performance with an F-measure value of 0.872, outperforming the state-of-the-art method in the literature.


Author(s):  
Xiao Ling ◽  
Sameer Singh ◽  
Daniel S. Weld

Recent research on entity linking (EL) has introduced a plethora of promising techniques, ranging from deep neural networks to joint inference. But despite numerous papers there is surprisingly little understanding of the state of the art in EL. We attack this confusion by analyzing differences between several versions of the EL problem and presenting a simple yet effective, modular, unsupervised system, called Vinculum, for entity linking. We conduct an extensive evaluation on nine data sets, comparing Vinculum with two state-of-the-art systems, and elucidate key aspects of the system that include mention extraction, candidate generation, entity type prediction, entity coreference, and coherence.


Sign in / Sign up

Export Citation Format

Share Document