scholarly journals Investigating Deep Feedforward Neural Networks for Classification of Transposon-Derived piRNAs

2020 ◽  
Author(s):  
Alisson Hayasi da Costa ◽  
Renato Augusto C. dos Santos ◽  
Ricardo Cerri

AbstractPIWI-Interacting RNAs (piRNAs) form an important class of non-coding RNAs that play a key role in the genome integrity through the silencing of transposable elements. However, despite their importance and the large application of deep learning in computational biology for classification tasks, there are few studies of deep learning and neural networks for piRNAs prediction. Therefore, this paper presents an investigation on deep feedforward networks models for classification of transposon-derived piRNAs. We analyze and compare the results of the neural networks in different hyperparameters choices, such as number of layers, activation functions and optimizers, clarifying the advantages and disadvantages of each configuration. From this analysis, we propose a model for human piRNAs classification and compare our method with the state-of-the-art deep neural network for piRNA prediction in the literature and also traditional machine learning algorithms, such as Support Vector Machines and Random Forests, showing that our model has achieved a great performance with an F-measure value of 0.872, outperforming the state-of-the-art method in the literature.

Author(s):  
Alisson Hayasi da Costa ◽  
Renato Augusto Corrêa dos Santos ◽  
Ricardo Cerri

AbstractPIWI-interacting RNAs (piRNAS) form an important class of non-coding RNAs that play a key role in gene expression regulation and genome integrity by silencing transposable elements. However, despite the importance of piRNAs and the large application of deep learning in computational biology, there are few studies of deep learning for piRNAs prediction. Still, current methods focus on using advanced architectures like CNN and variations. This paper presents an investigation on deep feedforward network models for classification of human transposon-derived piRNAs. We developed a lightweight predictor (when compared to other deep learning methods) and we show by practical evidence that simple neural networks can perform as well as better than complex neural networks when using the appropriate hyperparameters. For that, we train, analyze and compare the results of a multilayer perceptron with different hyperparameter choices, such as numbers of hidden layers, activation functions and optimizers, clarifying the advantages and disadvantages of each choice. Our proposed predictor reached a F-score of 0.872, outperforming other state-of-the-art methods for human transposon-derived piRNAs classification. In addition, to better access the generalization of our proposal, we also showed it achieved competitive results when classifying piRNAs of other species.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1459 ◽  
Author(s):  
Tamás Czimmermann ◽  
Gastone Ciuti ◽  
Mario Milazzo ◽  
Marcello Chiurazzi ◽  
Stefano Roccella ◽  
...  

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nalindren Naicker ◽  
Timothy Adeliyi ◽  
Jeanette Wing

Educational Data Mining (EDM) is a rich research field in computer science. Tools and techniques in EDM are useful to predict student performance which gives practitioners useful insights to develop appropriate intervention strategies to improve pass rates and increase retention. The performance of the state-of-the-art machine learning classifiers is very much dependent on the task at hand. Investigating support vector machines has been used extensively in classification problems; however, the extant of literature shows a gap in the application of linear support vector machines as a predictor of student performance. The aim of this study was to compare the performance of linear support vector machines with the performance of the state-of-the-art classical machine learning algorithms in order to determine the algorithm that would improve prediction of student performance. In this quantitative study, an experimental research design was used. Experiments were set up using feature selection on a publicly available dataset of 1000 alpha-numeric student records. Linear support vector machines benchmarked with ten categorical machine learning algorithms showed superior performance in predicting student performance. The results of this research showed that features like race, gender, and lunch influence performance in mathematics whilst access to lunch was the primary factor which influences reading and writing performance.


Author(s):  
Ruopeng Xie ◽  
Jiahui Li ◽  
Jiawei Wang ◽  
Wei Dai ◽  
André Leier ◽  
...  

Abstract Virulence factors (VFs) enable pathogens to infect their hosts. A wealth of individual, disease-focused studies has identified a wide variety of VFs, and the growing mass of bacterial genome sequence data provides an opportunity for computational methods aimed at predicting VFs. Despite their attractive advantages and performance improvements, the existing methods have some limitations and drawbacks. Firstly, as the characteristics and mechanisms of VFs are continually evolving with the emergence of antibiotic resistance, it is more and more difficult to identify novel VFs using existing tools that were previously developed based on the outdated data sets; secondly, few systematic feature engineering efforts have been made to examine the utility of different types of features for model performances, as the majority of tools only focused on extracting very few types of features. By addressing the aforementioned issues, the accuracy of VF predictors can likely be significantly improved. This, in turn, would be particularly useful in the context of genome wide predictions of VFs. In this work, we present a deep learning (DL)-based hybrid framework (termed DeepVF) that is utilizing the stacking strategy to achieve more accurate identification of VFs. Using an enlarged, up-to-date dataset, DeepVF comprehensively explores a wide range of heterogeneous features with popular machine learning algorithms. Specifically, four classical algorithms, including random forest, support vector machines, extreme gradient boosting and multilayer perceptron, and three DL algorithms, including convolutional neural networks, long short-term memory networks and deep neural networks are employed to train 62 baseline models using these features. In order to integrate their individual strengths, DeepVF effectively combines these baseline models to construct the final meta model using the stacking strategy. Extensive benchmarking experiments demonstrate the effectiveness of DeepVF: it achieves a more accurate and stable performance compared with baseline models on the benchmark dataset and clearly outperforms state-of-the-art VF predictors on the independent test. Using the proposed hybrid ensemble model, a user-friendly online predictor of DeepVF (http://deepvf.erc.monash.edu/) is implemented. Furthermore, its utility, from the user’s viewpoint, is compared with that of existing toolkits. We believe that DeepVF will be exploited as a useful tool for screening and identifying potential VFs from protein-coding gene sequences in bacterial genomes.


2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


2016 ◽  
Vol 21 (9) ◽  
pp. 998-1003 ◽  
Author(s):  
Oliver Dürr ◽  
Beate Sick

Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening–based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


2018 ◽  
Vol 10 (7) ◽  
pp. 1119 ◽  
Author(s):  
Masoud Mahdianpari ◽  
Bahram Salehi ◽  
Mohammad Rezaee ◽  
Fariba Mohammadimanesh ◽  
Yun Zhang

Despite recent advances of deep Convolutional Neural Networks (CNNs) in various computer vision tasks, their potential for classification of multispectral remote sensing images has not been thoroughly explored. In particular, the applications of deep CNNs using optical remote sensing data have focused on the classification of very high-resolution aerial and satellite data, owing to the similarity of these data to the large datasets in computer vision. Accordingly, this study presents a detailed investigation of state-of-the-art deep learning tools for classification of complex wetland classes using multispectral RapidEye optical imagery. Specifically, we examine the capacity of seven well-known deep convnets, namely DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and InceptionResNetV2, for wetland mapping in Canada. In addition, the classification results obtained from deep CNNs are compared with those based on conventional machine learning tools, including Random Forest and Support Vector Machine, to further evaluate the efficiency of the former to classify wetlands. The results illustrate that the full-training of convnets using five spectral bands outperforms the other strategies for all convnets. InceptionResNetV2, ResNet50, and Xception are distinguished as the top three convnets, providing state-of-the-art classification accuracies of 96.17%, 94.81%, and 93.57%, respectively. The classification accuracies obtained using Support Vector Machine (SVM) and Random Forest (RF) are 74.89% and 76.08%, respectively, considerably inferior relative to CNNs. Importantly, InceptionResNetV2 is consistently found to be superior compared to all other convnets, suggesting the integration of Inception and ResNet modules is an efficient architecture for classifying complex remote sensing scenes such as wetlands.


Author(s):  
Joan Serrà

Deep learning is an undeniably hot topic, not only within both academia and industry, but also among society and the media. The reasons for the advent of its popularity are manifold: unprecedented availability of data and computing power, some innovative methodologies, minor but significant technical tricks, etc. However, interestingly, the current success and practice of deep learning seems to be uncorrelated with its theoretical, more formal understanding. And with that, deep learning’s state-of-the-art presents a number of unintuitive properties or situations. In this note, I highlight some of these unintuitive properties, trying to show relevant recent work, and expose the need to get insight into them, either by formal or more empirical means.


2017 ◽  
Author(s):  
Ilia Korvigo ◽  
Andrey Afanasyev ◽  
Nikolay Romashchenko ◽  
Mihail Skoblov

AbstractMany automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and SIFT, to integrate more information in a single score. Although many advances have been made in feature design and machine learning algorithms used, the shortage of high-quality reference data along with the bias towards intensively studied in vitro models call for improved generalisation ability in order to further increase classification accuracy and handle records with insufficient data. Since a meta-estimator basically combines different scoring systems with highly complicated nonlinear relationships, we investigated how deep learning (supervised and unsupervised), which is particularly efficient at discovering hierarchies of features, can improve classification performance. While it is believed that one should only use deep learning for high-dimensional input spaces and other models (logistic regression, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare the performance with various popular predictors, many of which are recommended by the American College of Medical Genetics and Genomics (ACMG), as well as available deep learning-based predictors. Thanks to hardware acceleration we were able to use a computationally expensive genetic algorithm to stochastically optimise hyper-parameters over many generations. Overfitting was hindered by noise injection and dropout, limiting coadaptation of hidden units. Although we stress that this work was not conceived as a tool comparison, but rather an exploration of the possibilities of deep learning application in ensemble scores, our results show that even relatively simple modern neural networks can significantly improve both prediction accuracy and coverage. We provide open-access to our finest model at http://score.generesearch.ru.


Sign in / Sign up

Export Citation Format

Share Document