scholarly journals Impact of optically nonuniform luminescence coupling effect to the limiting cell conversion efficiency in InGaP/GaAs/Ge triple junction solar cell

2017 ◽  
Vol 7 (3) ◽  
pp. 035501 ◽  
Author(s):  
Bernice Mae F. Yu Jeco ◽  
Tomah Sogabe ◽  
Ryo Tamaki ◽  
Nazmul Ahsan ◽  
Yoshitaka Okada
2019 ◽  
Vol 14 (1) ◽  
pp. 1-5
Author(s):  
Victor De Rezende Cunha ◽  
Daniel Neves Micha ◽  
Rudy Massami Sakamoto Kawabata ◽  
Luciana Dornelas Pinto ◽  
Mauricio Pamplona Pires ◽  
...  

Electrical current mismatching is a well-known limitation of triple junction solar cells that lowers the final conversion efficiency. Several solutions have been proposed to face this issue, including the insertion of a multiple quantum well structure as the intermediate junction’s active material. With a better matching in the current among the junctions, the total current increases, thus modifying the working conditions of the overall device. In this way, the InGaP top junction needs to be optimized to such new condition. In this work, numerical simulations were carried out aiming the enlargement of the electrical current density of an InGaP pn junction to achieve the proper current matching in triple junction solar cell for spatial applications. The optimized structure has been grown in a GaAs substrate and characterized as a single junction solar cell. Although the measured short circuit current density and conversion efficiency are still well below the theoretically predicted values, processing improvement should lead to adequate cell performance.


2009 ◽  
Vol 94 (22) ◽  
pp. 223504 ◽  
Author(s):  
Wolfgang Guter ◽  
Jan Schöne ◽  
Simon P. Philipps ◽  
Marc Steiner ◽  
Gerald Siefer ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


2021 ◽  
Vol 2 (2) ◽  
pp. 100340
Author(s):  
Choongman Moon ◽  
Brian Seger ◽  
Peter Christian Kjærgaard Vesborg ◽  
Ole Hansen ◽  
Ib Chorkendorff

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


1994 ◽  
Vol 336 ◽  
Author(s):  
A. Terakawa ◽  
M. Shima ◽  
K. Sayama ◽  
H. Tarui ◽  
H. Nishiwaki ◽  
...  

ABSTRACTThe film properties and solar cell performance of a-SiGe:H samples with the same optical gap and different combinations of hydrogen content (CH) and germanium content (CGe) have been compared. The optimum composition for the initial properties, such as the tail characteristic energy, defect density and conversion efficiency of the solar cell, was determined, and the differences could be explained by the difference in H bonding configuration. The degradation ratio of the conversion efficiency becomes larger in higher CH samples. This suggests that hydrogen or Si-H2 participates in light-induced degradation. As a result, the optimum CH for an efficient solar cell is believed to shift to the lower CH region after light soaking. Based on these findings, the stabilized conversion efficiency of 3.3% under red light (γ>650nm) for an a-SiGe:H single-junction solar cell (1cm2) and 10.6% under lsun light for an a-Si/a-SiGe double-junction stacked solar cell (1cm2) have been achieved. The degradation ratio is only 8.6% for the double-junction solar cell.


Sign in / Sign up

Export Citation Format

Share Document