scholarly journals Low earth orbit sounder retrieval products at geostationary earth orbit spatial and temporal scales

2020 ◽  
Vol 14 (04) ◽  
Author(s):  
James Anheuser ◽  
Elisabeth Weisz ◽  
W. Paul Menzel
2021 ◽  
Vol 34 ◽  
pp. 85-92
Author(s):  
Ya.O. Romanyuk ◽  
O.V. Shulga ◽  
L.S. Shakun ◽  
M.I. Koshkin ◽  
Ye.B. Vovchyk ◽  
...  

The article describes the successes and challenges of the Ukrainian network of optical stations (UMOS) in recent years in the field of astrometric observations of artificial space objects both in low-Earth orbit (LEO) and geostationary Earth orbit (GEO). UMOS was established in 2012 as a joint partnership of organizations interested in satellite observations for scientific purposes and practical near Earth space monitoring. The main purpose of the UMOS has been (and still is) to combine scientific and technical means with regular optical (positional and / or non-positional) observation. The short list of equipment of the UMOS members are given in the tables. The programs for observations, used methods and obtained results are described in the paper. In conclusion, the advantages of observations of artificial space objects by means of a network are summarized. The experience of UMOS and main results obtained by UMOS can be considered as the first step to create the SSA system of Ukraine.


2020 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Emilio Matricciani

According to altitude, the orbits of satellites constellations can be divided into geostationary Earth orbit (GEO), medium Earth orbit (MEO), and low Earth orbit (LEO) constellations. We propose to use a Walker star constellation with polar orbits, at any altitude, to emulate the geostationary orbit with zenith paths at any latitude. Any transmitter/receiver will be linked to a satellite as if the site were at the equator and the satellite at the local zenith. This constellation design can have most of the advantages of the current GEO, MEO, and LEO constellations, without having most of their drawbacks. Doppler phenomena are largely minimized because the connected satellite is always seen almost at the local zenith. The extra free-space loss, due to the fixed pointing of all antennas, is at most 6 dBs when the satellite enters or leaves the service area. The connections among satellites are easy because the positions in the orbital plane and in adjacent planes are constant, although with variable distances. No steering antennas are required. The tropospheric propagation fading and scintillations are minimized. Our aim is to put forth the theoretical ideas about this design, to which we refer to as the geostationary surface (GeoSurf) constellation.


1983 ◽  
Author(s):  
I. KATZ ◽  
D. COOKE ◽  
D. PARKS ◽  
M. MANDELL ◽  
A. RUBIN

Sign in / Sign up

Export Citation Format

Share Document