geostationary earth orbit
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Flavio Iturbide-Sanchez ◽  
Zhipeng Wang ◽  
Satya Kalluri ◽  
Yong Chen ◽  
Erin Lynch ◽  
...  

2021 ◽  
Vol 34 ◽  
pp. 85-92
Author(s):  
Ya.O. Romanyuk ◽  
O.V. Shulga ◽  
L.S. Shakun ◽  
M.I. Koshkin ◽  
Ye.B. Vovchyk ◽  
...  

The article describes the successes and challenges of the Ukrainian network of optical stations (UMOS) in recent years in the field of astrometric observations of artificial space objects both in low-Earth orbit (LEO) and geostationary Earth orbit (GEO). UMOS was established in 2012 as a joint partnership of organizations interested in satellite observations for scientific purposes and practical near Earth space monitoring. The main purpose of the UMOS has been (and still is) to combine scientific and technical means with regular optical (positional and / or non-positional) observation. The short list of equipment of the UMOS members are given in the tables. The programs for observations, used methods and obtained results are described in the paper. In conclusion, the advantages of observations of artificial space objects by means of a network are summarized. The experience of UMOS and main results obtained by UMOS can be considered as the first step to create the SSA system of Ukraine.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Xiaomin Luo ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Guozhu Li ◽  
Chao Xiong ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tao Shi ◽  
Xuebin Zhuang ◽  
Liwei Xie

AbstractThe autonomous navigation of the spacecrafts in High Elliptic Orbit (HEO), Geostationary Earth Orbit (GEO) and Geostationary Transfer Orbit (GTO) based on Global Navigation Satellite System (GNSS) are considered feasible in many studies. With the completion of BeiDou Navigation Satellite System with Global Coverage (BDS-3) in 2020, there are at least 130 satellites providing Position, Navigation, and Timing (PNT) services. In this paper, considering the latest CZ-5(Y3) launch scenario of Shijian-20 GEO spacecraft via Super-Synchronous Transfer Orbit (SSTO) in December 2019, the navigation performance based on the latest BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and GLObal NAvigation Satellite System (GLONASS) satellites in 2020 is evaluated, including the number of visible satellites, carrier to noise ratio, Doppler, and Position Dilution of Precision (PDOP). The simulation results show that the GEO/Inclined Geo-Synchronous Orbit (IGSO) navigation satellites of BDS-3 can effectively increase the number of visible satellites and improve the PDOP in the whole launch process of a typical GEO spacecraft, including SSTO and GEO, especially for the GEO spacecraft on the opposite side of Asia-Pacific region. The navigation performance of high orbit spacecrafts based on multi-GNSSs can be significantly improved by the employment of BDS-3. This provides a feasible solution for autonomous navigation of various high orbit spacecrafts, such as SSTO, MEO, GEO, and even Lunar Transfer Orbit (LTO) for the lunar exploration mission.


2020 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Emilio Matricciani

According to altitude, the orbits of satellites constellations can be divided into geostationary Earth orbit (GEO), medium Earth orbit (MEO), and low Earth orbit (LEO) constellations. We propose to use a Walker star constellation with polar orbits, at any altitude, to emulate the geostationary orbit with zenith paths at any latitude. Any transmitter/receiver will be linked to a satellite as if the site were at the equator and the satellite at the local zenith. This constellation design can have most of the advantages of the current GEO, MEO, and LEO constellations, without having most of their drawbacks. Doppler phenomena are largely minimized because the connected satellite is always seen almost at the local zenith. The extra free-space loss, due to the fixed pointing of all antennas, is at most 6 dBs when the satellite enters or leaves the service area. The connections among satellites are easy because the positions in the orbital plane and in adjacent planes are constant, although with variable distances. No steering antennas are required. The tropospheric propagation fading and scintillations are minimized. Our aim is to put forth the theoretical ideas about this design, to which we refer to as the geostationary surface (GeoSurf) constellation.


Author(s):  
Laura Pirovano ◽  
Gennaro Principe ◽  
Roberto Armellin

AbstractWhen building a space catalogue, it is necessary to acquire multiple observations of the same object for the estimated state to be considered meaningful. A first concern is then to establish whether different sets of observations belong to the same object, which is the association problem. Due to illumination constraints and adopted observation strategies, small objects may be detected on short arcs, which contain little information about the curvature of the orbit. Thus, a single detection is usually of little value in determining the orbital state due to the very large associated uncertainty. In this work, we propose a method that both recognizes associated observations and sequentially reduces the solution uncertainty when two or more sets of observations are associated. The six-dimensional (6D) association problem is addressed as a cascade of 2D and 4D optimization problems. The performance of the algorithm is assessed using objects in geostationary Earth orbit, with observations spread over short arcs.


Sign in / Sign up

Export Citation Format

Share Document