Charge transfer phenomenon in optical storage material: Fe3+-doped poly(vinyl alcohol)

Author(s):  
Gurusamy Manivannan ◽  
Ognian Nikolov ◽  
Thiemo Kardinahl ◽  
Werner Keune ◽  
Hilmar Franke ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 791
Author(s):  
KM Manikandan ◽  
Arunagiri Yelilarasi ◽  
SS Saravanakumar ◽  
Raed H. Althomali ◽  
Anish Khan ◽  
...  

In this work, the quasi-solid-state polymer electrolyte containing poly(vinyl alcohol)-polypyrrole as a polymer host, potassium iodide (KI), iodine (I2), and different plasticizers (EC, PC, GBL, and DBP) was successfully prepared via the solution casting technique. Fourier transform infrared spectroscopy (FTIR) was used to analyze the interaction between the polymer and the plasticizer. X-ray diffraction confirmed the reduction of crystallinity in the polymer electrolyte by plasticizer doping. The ethylene carbonate-based polymer electrolyte showed maximum electrical conductivity of 0.496 S cm−1. The lowest activation energy of 0.863 kJ mol−1 was obtained for the EC-doped polymer electrolyte. The lowest charge transfer resistance Rct1 was due to a faster charge transfer at the counter electrode/electrolyte interface. The polymer electrolyte containing the EC plasticizer exhibited an average roughness of 23.918 nm. A photo-conversion efficiency of 4.19% was recorded in the DSSC with the EC-doped polymer electrolyte under the illumination of 100 mWcm−2.


1986 ◽  
Vol 1 (6) ◽  
pp. 861-869 ◽  
Author(s):  
Paul D. Garrett ◽  
David T. Grubb

2019 ◽  
Vol 18 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Luiza Jecu ◽  
Iuliana Raut ◽  
Elena Grosu ◽  
Mariana Calin ◽  
Violeta Purcar ◽  
...  

2017 ◽  
Vol 14 (5) ◽  
Author(s):  
Surenya Renuka Suseelan ◽  
Snima Kaniyampadi Sreenivasan ◽  
Shantikumar Vasudevan Nair ◽  
Vinoth-Kumar Lakshmanan

Sign in / Sign up

Export Citation Format

Share Document