Combination of Fourier transform and wavelet transform for fingerprint recognition

Author(s):  
Ruli Wang ◽  
Tiejun J. Hua ◽  
Junpei Wang ◽  
Y. J. Fan
2014 ◽  
Vol 214 ◽  
pp. 48-57 ◽  
Author(s):  
Krzysztof Prażnowski ◽  
Sebastian Brol ◽  
Andrzej Augustynowicz

This paper presents a method of identification of non-homogeneity or static unbalance of the structure of a car wheel based on a simple road test. In particular a method the detection of single wheel unbalance is proposed which applies an acceleration sensor fixed on windscreen. It measures accelerations cause by wheel unbalance among other parameters. The location of the sensor is convenient for handling an autonomous device used for diagnostic purposes. Unfortunately, its mounting point is located away from wheels. Moreover, the unbalance forces created by wheels spin are dumped by suspension elements as well as the chassis itself. It indicates that unbalance acceleration will be weak in comparison to other signals coming from engine vibrations, road roughness and environmental effects. Therefore, the static unbalance detection in the standard way is considered problematic and difficult. The goal of the undertaken research is to select appropriate transformations and procedures in order to determine wheel unbalance in these conditions. In this investigation regular and short time Fourier transform were used as well as wavelet transform. It was found that the use of Fourier transforms is appropriate for static condition (constant velocity) but the results proves that the wavelet transform is more suitable for diagnostic purposes because of its ability of producing clearer output even if car is in the state of acceleration or deceleration. Moreover it was proved that in the acceleration spectrum of acceleration measured on the windscreen a significant peak can be found when car runs with an unbalanced wheel. Moreover its frequency depends on wheel rotational frequency. For that reason the diagnostic of single wheel unbalance can be made by applying this method.


1999 ◽  
Vol 86 (3) ◽  
pp. 1081-1091 ◽  
Author(s):  
Vincent Pichot ◽  
Jean-Michel Gaspoz ◽  
Serge Molliex ◽  
Anestis Antoniadis ◽  
Thierry Busso ◽  
...  

Heart rate variability is a recognized parameter for assessing autonomous nervous system activity. Fourier transform, the most commonly used method to analyze variability, does not offer an easy assessment of its dynamics because of limitations inherent in its stationary hypothesis. Conversely, wavelet transform allows analysis of nonstationary signals. We compared the respective yields of Fourier and wavelet transforms in analyzing heart rate variability during dynamic changes in autonomous nervous system balance induced by atropine and propranolol. Fourier and wavelet transforms were applied to sequences of heart rate intervals in six subjects receiving increasing doses of atropine and propranolol. At the lowest doses of atropine administered, heart rate variability increased, followed by a progressive decrease with higher doses. With the first dose of propranolol, there was a significant increase in heart rate variability, which progressively disappeared after the last dose. Wavelet transform gave significantly better quantitative analysis of heart rate variability than did Fourier transform during autonomous nervous system adaptations induced by both agents and provided novel temporally localized information.


2019 ◽  
Vol 90 (3) ◽  
pp. 284-293
Author(s):  
Keita Kawasugi ◽  
Kazuhisa Takemura ◽  
Yumi Iwamitsu ◽  
Hitomi Sugawara ◽  
Sakura Nishizawa ◽  
...  

2011 ◽  
Vol 105-107 ◽  
pp. 267-270 ◽  
Author(s):  
Sung Wook Hwang ◽  
Jin Hyuk Han ◽  
Ki Duck Sung ◽  
Sang Kwon Lee

Tire noise is classified by pattern noise and road noise in a vehicle. Especially pattern noise has impulsive characteristics since it is generated by impacting of tire’s block on the road. Therefore, a special signal process is needed other than traditional Fourier Transform, because the characteristic of signal is varying with time. On the other hand, the pattern noise is a kind of non-stationary signal and is related to the impulsive train of pitch sequence of a block. In this paper, Wavelet Transform is applied to verify the impulse signal caused by impact of block and groove and to verify the relationship between the pattern noise and the train of pitch sequence.


2021 ◽  
Vol 4 (3) ◽  
pp. 37-41
Author(s):  
Sayora Ibragimova ◽  

This work deals with basic theory of wavelet transform and multi-scale analysis of speech signals, briefly reviewed the main differences between wavelet transform and Fourier transform in the analysis of speech signals. The possibilities to use the method of wavelet analysis to speech recognition systems and its main advantages. In most existing systems of recognition and analysis of speech sound considered as a stream of vectors whose elements are some frequency response. Therefore, the speech processing in real time using sequential algorithms requires computing resources with high performance. Examples of how this method can be used when processing speech signals and build standards for systems of recognition.Key words: digital signal processing, Fourier transform, wavelet analysis, speech signal, wavelet transform


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1361
Author(s):  
Abeer D. Algarni ◽  
Ghada El Banby ◽  
Sahar Ismail ◽  
Walid El-Shafai ◽  
Fathi E. Abd El-Samie ◽  
...  

The security of information is necessary for the success of any system. So, there is a need to have a robust mechanism to ensure the verification of any person before allowing him to access the stored data. So, for purposes of increasing the security level and privacy of users against attacks, cancelable biometrics can be utilized. The principal objective of cancelable biometrics is to generate new distorted biometric templates to be stored in biometric databases instead of the original ones. This paper presents effective methods based on different discrete transforms, such as Discrete Fourier Transform (DFT), Fractional Fourier Transform (FrFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT), in addition to matrix rotation to generate cancelable biometric templates, in order to meet revocability and prevent the restoration of the original templates from the generated cancelable ones. Rotated versions of the images are generated in either spatial or transform domains and added together to eliminate the ability to recover the original biometric templates. The cancelability performance is evaluated and tested through extensive simulation results for all proposed methods on a different face and fingerprint datasets. Low Equal Error Rate (EER) values with high AROC values reflect the efficiency of the proposed methods, especially those dependent on DCT and DFrFT. Moreover, a comparative study is performed to evaluate the proposed method with all transformations to select the best one from the security perspective. Furthermore, a comparative analysis is carried out to test the performance of the proposed schemes with the existing schemes. The obtained outcomes reveal the efficiency of the proposed cancelable biometric schemes by introducing an average AROC of 0.998, EER of 0.0023, FAR of 0.008, and FRR of 0.003.


Sign in / Sign up

Export Citation Format

Share Document