Synthetic aperture radar (SAR) data quality analysis on an open image processing system

1994 ◽  
Author(s):  
Sandro Severoni ◽  
Serge Riazanoff ◽  
Mario Stefanutti
2021 ◽  
Author(s):  
J P Dudley ◽  
S V Samsonov

Remote sensing using Synthetic Aperture Radar (SAR) offers powerful methods for monitoring ground deformation from both natural and anthropogenic sources. Advanced analysis techniques such as Differential Interferometric Synthetic Aperture Radar (DInSAR), change detection, and Speckle Offset Tracking (SPO) provide sensitive measures of ground movement. With both the RADARSAT-2 and RADARSAT Constellation Mission (RCM) SAR satellites, Canada has access to a significant catalogue of SAR data. To make use of this data, the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products from SAR data using both DInSAR and SPO methods. This document provides a user guide for this automated processing system.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2919 ◽  
Author(s):  
Agnieszka Chojka ◽  
Piotr Artiemjew ◽  
Jacek Rapiński

Interferometric Synthetic Aperture Radar (InSAR) data are often contaminated by Radio-Frequency Interference (RFI) artefacts that make processing them more challenging. Therefore, easy to implement techniques for artefacts recognition have the potential to support the automatic Permanent Scatterers InSAR (PSInSAR) processing workflow during which faulty input data can lead to misinterpretation of the final outcomes. To address this issue, an efficient methodology was developed to mark images with RFI artefacts and as a consequence remove them from the stack of Synthetic Aperture Radar (SAR) images required in the PSInSAR processing workflow to calculate the ground displacements. Techniques presented in this paper for the purpose of RFI detection are based on image processing methods with the use of feature extraction involving pixel convolution, thresholding and nearest neighbor structure filtering. As the reference classifier, a convolutional neural network was used.


2020 ◽  
Vol 8 (3) ◽  
pp. 208-218
Author(s):  
S.K. Tiwari ◽  
Prasada Rao G

In the present study, an attempt is made to estimate the area under paddy crop during Rabi, 2013-14 using Microwave satellite data in the eastern part of Godavari delta. Clouds veil nearly the entire sky in both (Kharif & Rabi) seasons of Andhra Pradesh and hinder the estimation of crop acreage through optical satellite sensors. Microwaves can penetrate clouds and be used to detect crops during the day and night, regardless of cloud cover. Radar Imaging SATellite-1 (RISAT-1), microwave sensor, dual-polarization Horizontal-Horizontal (HH), Horizontal-Vertical (HV), Medium Resolution scanSAR Mode (MRS) data (18 m pixel spacing and 37° incidence angle) of three different dates (in December, January, and February) with 25 days interval was used. The backscatter (dB) values of the early, mid, and late-season transplanted stages of paddy crop were used to estimate the paddy crop acreage coupled with ground truth information during different stages of the crop. It was observed that the dB values at the transplanting stage rapidly increased with plant growth in the early season sown areas and mid-season sowed paddy illustrate a dip in dB values in the second date due to change in transplantation and increased backscatter coefficient values in the third date because of crop growth after transplantation. The backscatter signature value of late sowing paddy crop showed first and second dates with high backscatter due to previous crop/vegetation and then a sudden dip in the third date as submerged field ready for transplantation. The dB values of the above stages were used in decision-based classifier to estimate paddy crop acreage. The paddy area was compared at Mandal (sub-district level) estimates observed the significant coefficient of determination (R² = 0.89) between traditional estimates and Synthetic Aperture Radar (SAR) data assessment. This study robustly suggests the utilization of SAR data in agricultural crop monitoring during cloud cover.


Sign in / Sign up

Export Citation Format

Share Document