Biochemical sensing in tissues: determination of fluorescent lifetimes in multiply scattering media using frequency-domain spectroscopy

Author(s):  
Christina L. Burch ◽  
Joseph R. Lakowicz ◽  
Eva M. Sevick-Muraca
2021 ◽  
pp. 107754632110337
Author(s):  
Arup Maji ◽  
Fernando Moreu ◽  
James Woodall ◽  
Maimuna Hossain

Multi-Input-Multi-Output vibration testing typically requires the determination of inputs to achieve desired response at multiple locations. First, the responses due to each input are quantified in terms of complex transfer functions in the frequency domain. In this study, two Inputs and five Responses were used leading to a 5 × 2 transfer function matrix. Inputs corresponding to the desired Responses are then computed by inversion of the rectangular matrix using Pseudo-Inverse techniques that involve least-squared solutions. It is important to understand and quantify the various sources of errors in this process toward improved implementation of Multi-Input-Multi-Output testing. In this article, tests on a cantilever beam with two actuators (input controlled smart shakers) were used as Inputs while acceleration Responses were measured at five locations including the two input locations. Variation among tests was quantified including its impact on transfer functions across the relevant frequency domain. Accuracy of linear superposition of the influence of two actuators was quantified to investigate the influence of relative phase information. Finally, the accuracy of the Multi-Input-Multi-Output inversion process was investigated while varying the number of Responses from 2 (square transfer function matrix) to 5 (full-rectangular transfer function matrix). Results were examined in the context of the resonances and anti-resonances of the system as well as the ability of the actuators to provide actuation energy across the domain. Improved understanding of the sources of uncertainty from this study can be used for more complex Multi-Input-Multi-Output experiments.


1997 ◽  
Vol 28 (5) ◽  
pp. 218-224 ◽  
Author(s):  
X Intes ◽  
B Le Jeune ◽  
F Pellen ◽  
Y Guern ◽  
J Cariou ◽  
...  

Author(s):  
Olivier Balima ◽  
Joan Boulanger ◽  
Andre´ Charette ◽  
Daniel Marceau

This paper presents a numerical study of optical tomography in frequency domain for the reconstruction of optical properties of scattering and absorbing media with collimated irradiation light sources. The forward model is a least square finite element formulation of the collimated irradiation problem where the intensity is separated into its collimated and scattered parts. This model does not use any empirical stabilization and moreover the collimated source direction is taken into account. The inversion uses a gradient type minimization method where the gradient is computed through an adjoint formulation. Scaling is used to avoid numerical round errors, as the output readings at detectors are very low. Numerical reconstructions of optical properties of absorbing and scattering media with simulated data (noised and noise-free) are achieved in a complex geometry with satisfactory results. The results show that complex geometries are well handled with the proposed method.


Sign in / Sign up

Export Citation Format

Share Document